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Abstract

A simple model of a buying-selling cycle is proposed. The model
comprises two moves: a rational buying and a random selling. The
notion of a profit intensity is introduced. Supply and demand curves
and geometrical interpretation are discussed in this context.

1 INTRODUCTION
The very aim of any conscious and rational economic activity is optimiza-
tion of the profit in given economic conditions and, usually, during definite
intervals. The interval is chosen so that it contains a certain characteristic
economic cycle (e.g. one year, a season, an insurance period or a contract
date). Of course, often it is possible and reasonable to make prognosis for a
distant future of an undertaking by extrapolation from the already known
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facts. The quantitative description of an undertaking is extremely difficult
when the time of duration of the intervals in question is itself a random
variable (denoted by � in the following). The profit gained during the spe-
cific period, described as a function of � , becomes also a random variable
and as that does not measure the quality of the undertaking. To investigate
activities that have different periods of duration we define, following the
queuing theory Billingsley (1979), the profit intensity as a measure of this
economic category. An acceptable definition of the profit must provide us
with an additive function. It seems that the proposed interval interest rate
notion leads to consistent results.

2 THE PROFIT INTENSITY
Let t, �t and �t+� denote the beginning of an interval of the duration � ,
the value of the undertaking (asset) at the beginning and at the end of the
interval, respectively. We define the logarithmic rate of return rt;t+� as

(1) rt;t+� � ln

�
�t+�

�t

�
:

Let the expectation value of the random variable � in one cycle (buying-
selling or vice versa) be denoted by E (�). If E (rt;t+� ) and E (�) are finite
then we define the profit intensity for one cycle �t Piotrowski(1999) as

(2) �t �
E (rt;t+� )

E (�)
:

This definition is an immediate consequence of the Wald identity Resnick(1998):

(3) E (S� 0) = E (X1)E (� 0) ;

where S� 0 � X1 + : : : + X� 0 is the sum of � 0 equally distributed random
variables Xk; k = 1; : : : ; � 0 and �

0 is the stopping time, Billingsley (1979)
and Resnick (1998). It is obvious that the profit intensity we have defined
in the Equation (2) is just the E (X1) from the Wald identity, Equation (3).
The expected profit is the left hand side of the Wald identity. If we are
interested in the profit expected in a time unit we have, according to Wald,
divide the expected profit by the expectation value of the stopping time,
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so we get the Equation (2). We can also calculate the variance of the profit
intensity by using the proposition 10.14.4 from the reference Resnick (1998):

(4) E

��
S� 0 � �

0
E (X1)

�2�
= E (� 0)V ar (X1) :

Of course, our definition of the profit intensity is applicable also in more
general cases when the random variables Xi are correlated or have different
distributions.

The profit expected after an arbitrary time interval, say [0; T ] is given
by

(5) �0;T �
Z T

0

�tdt :

The proposed definition of the profit intensity is a convenient starting
point for the consideration of the proposed below model. Relations to the
commonly used measures of profits (returns) can be easily obtained by
simple algebraic manipulations.

3 THE MERCHANDISING MATHEMATICIAN
MODEL

Let us consider the simplest possible market event of exchanging two goods
which we would call the asset and the money and denote by � and $, re-
spectively. The proposed model comprises two moves. First move consist
in a rational buying of the asset � (exchanging $ for �). The meaning
of the adjective rational will be explained below. The second move con-
sist in a random (immediate) selling of the purchased amount of the asset
� (exchanging � for $). Note that the order of these transactions can be
reversed and, in fact, is conventional. Let V� and V$ denote some given
amounts of the asset and the money, respectively. If at some time t the
assets are exchanged in the proportion V$ : V� than we call the number

(6) pt � ln (V$)� ln (V�)

the logarithmic quotation for the asset �. If the trader buys some amount
of the asset � at the quotation pt1 at the moment t1 and sells it at the
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quotation pt2 at the later moment t2 then his profit (or more precise the
logarithmic rate of return) will be equal to

(7) rt1;t2 = pt2 � pt1 :

The logarithmic rate of return, contrary to pt, does not depend on the
choice of unit used to measure the assets in question. From the projective
geometry point of view rt1;t2 is an invariant and pt is not, cf the discussion
of demand and supply curves in the Section 4.

The merchandising mathematician model (MM model) consists in
what we call the rational purchase followed by a random selling of some
asset �. The rational purchase is simply a purchase bound by a fixed
withdrawal price �a that is such a logarithmic quotation for the asset
�, �a, above which the trader gives the buying up. The quotation method
does not matter to the process of rational purchase. A random selling can
be identified with the situation when the withdrawal price is set to �1 (the
trader in question is always bidding against the rest of traders).

Let us suppose now that the model describes a stationary process, that
is the probability density � (p) of the random variable p (the logarithmic
quotation) does not depend on time. Note that it is sufficient to know the
logarithmic quotations up to arbitrary constant because what matters is
the profit and profit is always a difference of quotations. This is analogous
with the classical physics where only differences of the potential matter
(cf Newton’s gravity). Therefore we can suppose that expectation value of
the random variable p is equal to zero, E (p) = 0. We shall also suppose
that the market is large enough not to be influenced by our trader. Let the
expression [sentence] takes value 0 or 1 if the sentence is false or true,
respectively (Iverson convention), Graham, Knuth, and Patashnik (1994).
The mean time of a random transaction (buying or selling, it is a matter
of convention) will be denoted by �. The value of � is fixed in our model
due to the stationarity assumption. Besides, to eliminate paradoxes (e.g.
infinite profits during finite time spreads) � should be greater than zero. Let
x denote the probability that the rational purchase would not occur:

(8) x � E� ([p > �a]) :

The expectation value of the rational purchase time of the asset � is equal
to

(9) �

�
(1� x) + 2x (1� x) + 3x2 (1� x) + 4x3 (1� x) + : : :

�
:

4



The ratio of the expected duration of the whole buying-selling cycle and
the expected time of a random reverse transaction is given by

(10)

E�(�)

�
= 1 + (1� x)

P
1

k=1
kx

k�1

= 1 + (1� x) d

dx

P
1

k=0
x
k

= 1 + (1� x) d

dx

1

1�x
= 1 + 1

1�x

:

Therefore the mean length of the whole cycle is given by

(11) E� (�) =
�
1 + (E� ([p � �a]))�1

�
�:

The logarithmic rate of return for the whole cycle is

(12) rt;t+� = �p!� + p�!;

where the random variable p!� (quotation at the moment of purchase) has
the distribution restricted to the interval (�1;�a]:

(13) �!� (p) =
[p � �a]

E� ([p � �a])
� (p) :

The random variable p�! (quotation at the moment of selling) has the
probability density �, as the selling is at random. The expectation value of
the of the profit after the whole cycle is

(14) �� (a) =
�
R
�a

�1
p � (p) dp

1 +
R
�a

�1
� (p) dp

;

which follows from Equations (5) and (13). This function has very interesting
properties (we will often drop the subscript � in the following text) stated
as the Theorem 1.

THEOREM 1 The maximal value of the function � , amax , lies at a
fixed point of �, that is fulfills the condition � (amax) = amax. Such a
fixed point amax exists and amax > 0.

Proof
The fixed point condition:

(15)
�
R
�a

�1
p � (p) dp

1 +
R
�a

�1
� (p) dp

= a
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can be rewritten as :

(16) a

�
1 +

Z
�a

�1

� (p) dp

�
= �

Z
�a

�1

(p+ a) � (p) dp+

Z
�a

�1

a � (p) dp:

This leads to

(17) a = �
Z 0

�1

p � (p� a) dp:

The derivative of the righthand side of the Equation. (17) is equal to

(18) �
Z
�a

�1

� (p) dp

and it is obvious that the righthand side of the Equation (17) is a non-
increasing positive function of a that tends to 0 for a!1. Remember that
we have supposed that the expectation value of p is equal to 0 so that �
cannot identically vanish for p � 0. To end the proof it sufficient to notice
that the vanishing of the derivative of the function � :

(19) a � (a)

�
1 +

Z
�a

�1

� (p) dp

�
+ � (a)

Z
�a

�1

p � (p) dp = 0:

is exactly the fixed point condition (15) multiplied by � (a). So for a non-
vanishing � (a) the proof ends here. If � (a) vanishes then the derivative of
�:

(20)
d� (a)

da
=

a � (a)

1 +
R
�a

�1
� (p) dp

+
� (a)

R
�a

�1
p � (p) dp�

1 +
R
�a

�1
� (p) dp

�2
is non-negative in small vicinities of a and there is no extremum at a.

It might be useful to analyze an example here.

EXAMPLE 1 (normal distribution) Let now � (p; �) be the standard
normal probability density with the variance � and expectation value
p̂ of a random variable p

(21) � (p; �) � 1p
2��

exp

 
�(p� p̂)2

2�2

!
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In this case the expectation value of the profit during a whole cycle
� (a; �)

normal
(we have explicitly shown the dependence on the variance

�) has a nice scaling property :

(22) � (a; �)
normal

= �� (a; 1)
normal

;

and it is sufficient to work out the � = 1 case only. If this is the case
we get the maximal expectation value of the profit for a = 0:27603.
According to the Theorem 1. the maximal expected profit is also equal
to 0:27063.

It is worth to notice that the condition (17) clearly shows what the max-
imal possible profit is.

It tempting to claim that the function � is a contraction. In a general case
this is not true. Simple inspection reveals that if the probability has a very
narrow and high maximum then � is not a contraction in the vicinity of
the maximum. But for any realistic probability density one can start at any
value of a and by iteration wind up in the fixed point (Banach fixed point
theorem). We skip the details because they are technical and unimportant
for the conclusions of the paper.

4 DEMAND AND SUPPLY CURVES
The literature on economics including texts avoiding mathematical formal-
ism abounds in graphs and diagrams presenting various demand and sup-
ply curves. For example, Blaug in Blaug (1985) quotes at least a hundred
of such diagrams. This illustrates the importance the economists attach to
them. Such approach is also possible in the MM model. Let us consider the
functions

(23) Fs � E�1 ([� � x]) =

Z x

�1

�1 (p) dp;

and

(24) Fd � E�2 ([� � x]) =

Z
1

x

�2 (p) dp;

where we have introduced two, in general case different, appropriate proba-
bility density �1 and �2. They may differ due to the existence of a monopoly,

7



specific market regulations, taxes, cultural habits and so on. Let us recall
that one can find two ways of presenting demand/supply curves in the lit-
erature. The first one (French) is based on the assumption that the demand
is a function of prices and is usually referred to as the Cournot convention.
The Anglo-Saxon literature prefers the Marshall convention with reversed
roles of the coordinates. The demand (supply) is not always a monotonic
function of prices (cf. the discussed below turning back of demand/supply
curves) therefore the Marshall convention seems to be less convenient (one
cannot use the notion of a function). The MM model with the price-like
parameter x refers to the Cournot convention. So, for a fixed value x of the
logarithm of the price of an asset �, the value of the supply function Fs(x)
is given by the probability of the purchase of a unit at the price e

x. The
asset would be provided by everyone who is willing to sell it at the price
e
x or lower than e

x. The function Fd(x) can be interpreted in an analogous
way. If we neglect the sources of possible differences between �1 and �2

and, in addition, suppose that at any fixed price there are no indifferent
traders (that is everybody wants to sell or buy) then we can claim that

(25) E�1 ([� � x]) + E�2 ([� > x]) = 1:

The differentiation of the Equation (25) leads to �1 = �2. Under these con-
ditions the price e

y for which E�1 ([� � y]) = E�2 ([� > y]) = 1

2
establishes

the equilibrium price in the classical meaning. This simply means that this
price the most frequent one. Recall that the MM model is scaled so that this
price is e0 = 1.

It would be instructive to analize the problem from the projective ge-
ometry point of view. In this approach the market is described in the
N�dimensional real projective space, <PN that is (N + 1)�dimensional
vector space <N+1 (one real coordinate for each asset) subjected to the
equivalence relation v � �v for v 2 <N+1 and � 6= 0. For example we
identify all portfolios having assets in the same proportions. The actual
values can be obtained by rescaling by �. The details would be presented
elsewhere. In this context separate profits gained by buying or selling are
not invariant (coordinate free). The profit rt;t+� gained during the whole
cycle is given by the logarithm of an appropriate anharmonic (cross) ratio,
Courant and Robbins (1996), and is an invariant (e.g. its numerical value
does not depend on units chosen to measure the assets). The anharmonic
ratio for four points lying on a given line, A; B; C; D is the double ratio of
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lengths of segments AC

AB
: DC

DB
and is denoted by [A;B;C;D]. In our case the

anharmonic ratio in question, [�; U!�; U�!; $], concerns the pair of points:

(26) U!� � (�; � � ep!�; : : :) and U�! � (w;w � ep�!; : : :)

and the pair � and $. The last pair results from the crossing of the hy-
persurfaces � and $ corresponding to the portfolios consisting of only one
asset � or $, respectively and the line U!�U�!. The dots represent other
coordinates (not necessary equal for both points). The line connecting U!�

and U�! may be represented by the one-parameter family of vectors u(�)
with ��coordinates given by

(27) u� (�) � � (U!�)� + (1� �) � (U�!)
�
:

This implies that the values of � corresponding to the points � and $ are
given by the conditions:

(28) u0 (�$) = �$ (U!�)0 + (1� �$) � (U�!)
0
= 0

and

(29) u1 (��) = �� (U!�)1 + (1� ��) � (U�!)
1
= 0:

Substitution of the Equation (26) leads to

(30) �$ =
w

w � �

and

(31) �� =
we

p�!

wep�! � �ep!�

:

The calculation of the logarithm of the cross ratio [�; U!�; U�!; $] on the
line U!�U�! leads to

(32)
ln [�; U!�; U�!; $] = ln

�
wep�!

wep�!��ep!�
; 1; 0; w

w��

�
= ln v w ep�!

v ep!� w
= p�! � p!�

which corresponds to the formula (7).
Contrary to the classical economics the balance in the MM model does

not result in uniform quotations (prices) for the asset � but only in a sta-
tionarity of the supply and demand functions E�1 ([� � x]) and E�2 ([� � x]).
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Therefore the MM model is not valid when the changes in the probabilities
happens during periods shorter or of the order of the mean time transac-
tion �. Of course the presented above stochastic interpretation of the supply
and demand remains valid in such situations. In addition we can consider
piecewise decreasing functions Fs and Fd. Such generalization requires that
these function cease to be probability distribution functions because their
derivatives (probability densities) are not positive definite. This corresponds
to the effect of turning back of the supply and demand curves what hap-
pens for work supplies and the Giffen goods, Stigler (1947). In the Marshall
convention these curves loose the function property. In the Cournot con-
vention these curves are diagrams of multivalued functions. In this way
negative probability densities (Wigner function) gain interesting economics
reason for the existence. Wigner functions emerged in the quantum theory,
Feynman (1987). By a choice of stochastic process consistent with the MM
model one can determine the dynamics of such a model, cf Blaquiere (1980).
Therefore we suspect that the departure from the laws of supply and de-
mand might be the first known example of a macroscopic reality governed
by quantum-like rules. Such hypothetical quantum economics started with
the evidence given by Robert Giffen in the British Parliament, Stigler (1947)
would have earlier origin than the quantum physics. It should be noted
here that from the quantum game theory point of view the Gauss distri-
bution function is the only supply (demand) curve that fulfills the physical
correspondence principle. The authors would devote a separate paper to
this very interesting problem.

Let us note that the distribution functions allow for correct description
of the famous Zeno paradoxes (when grains form a pile? when you start
to be bald?) because the introduction of probabilities removes the origi-
nal discontinuity. For example the problem of morally right prices: if the
price is low (state 0) nobody wants to sell and if the price is high (state 1)
everybody wants to sell. Without the probability theory we are not able
to describe intermediate states which, in fact, are typical on the markets.
Does it suggest that the MM model can also be applied to problems where
there is a necessity of finding maximum (minimum) of a profit intensity like
parameter?
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5 CONCLUDING REMARKS
We have discussed the model where the trader fixes the maximal price he
is willing to pay for the asset � and then after some time sells it at random.
One can easily reverse the buying and selling strategies. If this is the case
the formula (14) should be modified to:

(33) � (b) =

R
1

b
p � (p) dp

1 +
R
1

b
� (p) dp

;

where b denotes the minimal acceptable price of � (that is below which
the trader gives up the selling).

It is interesting that the optimal behaviour of the trader consist in fixing
the withdrawal price below the mean quotation so that the difference is
exactly the profit expected during a mean buying-selling cycle. If he or she
manages to do so then the optimal and stable position is reached and no
further manoeuvring is necessary. So the best strategy is the self-consistent
correction of the withdrawal price, cf Theorem 1. The existence of such
a mechanism is highly required in dynamical markets where the distribu-
tions of quotations are continuously changing. Please note that if we set
finite withdrawal prices for both type of transactions (buying and selling)
the above simple recipe cease to work. One might ask if this suggests that
the two-way transactions should be avoided? Or the only correct model is
the one consisting in random buying followed by selling with fixed with-
drawal price? One might suggest (suspect?) that the later case is the only
one when it is possible to define the quotation distribution relatively to the
subsequent selling. This might be compared with widely spread opinion
among brokers that the moment of closing of a open position is much more
important than the actual moment of opening this position (i.e. random buy-
ing). Of course the terms selling and buying are conventional: while selling
the asset � one buys $.

At the end we would like to note that the process of searching optimal
solutions and fixed points are the key issues of contemporary mathemati-
cal economics, Debreu (1981). Such classical results as generalised Brouwer
theorem, Kakutani (1941), and the Brown-Robinson iteration, Robinson (1951),
are widely applied. The proposed MM model combines both ideas. The

11



authors envisage the extension of the MM model to the randomized with-
drawal price cases which might also generalise the results of Piotrowski and
Sładkowski (2001), where thermodynamics of investors was considered and
the temperature of portfolios was defined.
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