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Abstract

We discuss the time evolution of quotation of stocks and commodi-
ties and show that quantum-like correction to the orthodox Bachelier
model may be important. Our analysis shows that traders act as a sort
of (quantum) tomograph and their strategies can be reproduced from
the corresponding Wigner functions. The proposed interpretation of
the chaotic movement of market prices imply that Orstein-Uhlenbeck
corrections to the Bachelier model should qualitatively matter for large

 scales. We also propose a solution to the currency preference para-
dox.
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1 Introduction
We have managed to formulate a new approach to quantum game theory
[1]-[3] that is suitable for description of market transactions in term of supply
and demand curves [4]-[6]. In this approach quantum strategies are vectors
in some Hilbert space and can be interpreted as superpositions of trading
decisions. Strategies and not the apparatus or installation for actual playing
are at the very core of the approach. Spontaneous or institutionalized mar-
ket transactions are described in terms of projective operation acting on
Hilbert spaces of strategies of the traders. Quantum entanglement is neces-
sary to strike the balance of trade. This approach predicts the property of
undividity of attention of traders (no cloning theorem) and unifies the En-
glish auction with the Vickrey’s one attenuating the motivation properties
of the latter. There are apparent analogies with quantum thermodynamics
that allow to interpret market equilibrium as a state with vanishing finan-
cial risk flow. Euphoria, panic or herd instinct often cause violent changes
of market prices. Such phenomena can be described by non-commutative
quantum mechanics. A simple tactics that maximize the trader’s profit on an
effective market follows from the model: accept profits equal or greater
then the one you have formerly achieved on average [5].
The player strategy j i belongs to some Hilbert space and have two im-
portant representations hqj i(demand representation) and hpj i(supply rep-
resentation) where q and p are logarithms of prices at which the player is
buying or selling, respectively [4, 6]. We have defined canonically conjugate
hermitian operators (observables) of demandQk and supply Pk correspond-
ing to the variables q and p characterizing strategy of the k-th player. This
led us to the definition of the observable that we call the risk inclination
operator:

H(Pk;Qk) :=
(Pk � pk0)

2

2m
+
m!2(Qk � qk0)

2

2
; (2)

where pk0 := kh jPkj ik
kh j ik , qk0 := kh jQkj ik

kh j ik , ! := 2�
�
. � denotes the characteristic

time of transaction [5, 6] which is, roughly speaking, an average time spread
between two opposite moves of a player (e. g. buying and selling the same
commodity). The parameter m> 0 measures the risk asymmetry between
buying and selling positions. Analogies with quantum harmonic oscillator
allow for the following characterization of quantum market games. One
can introduce the constant hE that describes the minimal inclination of
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the player to risk. It is equal to the product of the lowest eigenvalue of
H(Pk;Qk) and 2�. 2� is in fact the minimal interval during which it makes
sense to measure the profit.

2 Quantum tomography
Let us consider a simple market with a single commodity G. A consumer
(trader) who buys this commodity measures his/her profit in terms of the
variable w=�q. The producer who provides the consumer with the com-
modity uses w=�p to this end. Analogously, an auctioneer uses the vari-
able w = q (we neglect the additive or multiplicative constant brokerage)
and a middleman who reduces the store and sells twice as much as he buys
would use the variable w=�2p� q. Various subjects active on the market
may manifest different levels of activity. Therefore it is useful to define a
standard for the ”canonical” variables p and q so that the risk variable [6]
takes the simple form p2

2
+ q2

2
and the variable w measuring the profit of a

concrete market subject dealing in the commodity G is given by

u q+ v p+w(u; v) = 0 ; (1)

where the parameters u and v describe the activity. The dealer can modify
his/her strategy j i to maximize the profit but this should be done within
the specification characterized by u and v. For example, let us consider a
fundholder who restricts himself to purchasing realties. From his point of
view, there is no need nor opportunity of modifying the supply representa-
tion of his strategy because this would not increase the financial gain from
the purchases. One can easily show by recalling the explicit form of the
probability amplitude j i2L2 that the triple (u; v; j i) describes properties
of the profit random variable w gained from trade in the commodity G. We
will use the Wigner function W (p; q) defined on the phase space (p; q)

W (p; q) := h�1E

Z 1

�1
ei}

�1
E px

hq + x
2
j ih jq � x

2
i

h j i dx

= h�2E

Z 1

�1
ei}

�1
E qx

hp+ x
2
j ih jp� x

2
i

h j i dx;

to measure the (pseudo-)probabilities of the players behaviour implied by
his/her strategy j i (the positive constant hE = 2�}E is the dimensionless
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economical counterpart of the Planck constant discussed in the previous
section [4, 6]). Therefore if we fix values of the parameters u and v then
the probability distribution of the random variable w is given by a par-
tialmarginal distribution Wu;v(w)dw that is equal to the Wigner function
W (p; q) integrated over the line u p+ v q + w = 0:

Wu;v(w) :=

ZZ
R2

W (p; q) Æ(u q+v p+w; 0) dpdq ; (2)

where the Dirac delta function is used to force the constraint ( Æ(u q+v p+
w; 0)). The above integral transform (W : R2 ! R) �! (W : P2 ! R) is
known as the Radon transform [7]. Let us note that the function Wu;v(w) is
homogeneous of the order -1, that is

W�u;�v(�w) = j�j�1Wu;v(w) :

Some special examples of the (pseudo-) measure Wu;v(w)dw where previ-
ously discussed in [4, 6, 8]. The squared absolute value of a pure strategy
in the supply representation is equal to W0;1(p) (jhpj ij2 = W0;1(p)) and in
the demand representation the relation reads jhqj ij2 = W1;0(q). It is pos-
itive definite in these cases for all values of u and v. If we express the

variables u and v in the units }
� 1

2

E the the definitions of W (p; q) and Wu;v

lead to the following relation between Wu;v(w) i hpj i or hqj i for both
representations1[9]:

Wu;v(w) =
1

2�jvj
���Z 1

�1
e

i
2v
(up2+2pw)hpj i dp

���2: (3)

The integral representation of the Dirac delta function

Æ(uq+vp+w; 0) =
1

2�

Z 1

�1
eik(uq+vp+w)dk (4)

helps with finding the reverse transformation to (2). The results is:

W (p; q) =
1

4�2

ZZZ
R3

cos(uq+vp+w)Wu;v(w) dudvdw : (5)

1One must remember that switching roles of p and q must be accompanied by switching
u with v
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Traders using the same strategy (or single traders that can adapt his moves
to variable market situations) can form tomographic pictures of their strate-
gies by measuring profits from trading in the commodity G. These pictures
would be influenced by various circumstances and characterized by val-
ues of u and v. These data can be used for reconstruction of the respective
strategies expressed in terms the Wigner functionsW (p; q) according to the
formula (5).

2.1 Example: marginal distribution of an adiabatic strat-
egy

Let us consider theWigner function of the n-th excited state of the harmonic
oscillator [10]

Wn(p; q)dpdq =
(�1)n

�}E
e
� 2H(p;q)

}E! Ln
�4H(p; q)

}E!

�
dpdq ;

where Ln is the n-th Laguerre polynomial. We can calculate (cf. the defini-
tion (2)) marginal distribution corresponding to an adiabatic strategy. The
identity [11] Z 1

�1
eikw�

k2

4 Ln

�k2
2

�
dk =

2n+1
p
�

n!
e�w

2

H2
n(w) ;

where Hn(w) are the Hermite polynomials, Eq. (4) and the generating func-
tion for the Laguerre polynomials, 1

1�t e
xt
t�1 =

P1
n=0 Ln(x) t

n lead to

Wn;u;v(w) =
2np

�(u2 + v2)n!
e�

w2

u2+v2 H2
n

� wp
u2 + w2

�
= jhwj nij2: (6)

This is the squared absolute value of the probability amplitude expressed
in terms of the variable w. It should be possible to interpret Eq. (6) in terms
of stochastic interest rates but this outside the scope of the present paper.

3 Canonical transformations
Let us call those linear transformations (P;Q)!(P 0;Q0) of operators P and
Q that do not change their commutators PQ�QP canonical. The canonical
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transformations that preserve additivity of the supply and demand compo-
nents of the risk inclination operator P2

2m
+ mQ2

2
[4, 6] can be expressed in

the compact form �P
Q
�

=

 
Re z
zz

Im z

� Im z
zz

Re z

!�P 0

Q0

�
; (7)

where z 2 C is a complex parameter that is related to the risk asymmetry
parameter m, m = zz. Changes in the absolute value of the parameter z
correspond to different proportions of distribution of the risk between buy-
ing and selling transactions. Changes in the phase of the parameter z may
result in mixing of supply and demand aspects of transactions. For example,
the phase shift �

4
leads to the new canonical variables P 0 = Y := 1p

2
(P�Q)

and Q0 = Z := 1p
2
(P+Q). The new variable Y describes arithmetic mean

deviation of the logarithm of price from its expectation value in trading in
the asset G. Accordingly, the new variable Z describes the profit made in
one buying-selling cycle in trading in the asset G. Note that the normal-
ization if forced by requirement of canonicality of transformations. In the
following we will use Schrödinger-like picture for description of strategies.
Therefore strategies will be functions of the variable y being the properly
normalized value of the logarithm of the market price of the asset in ques-
tion. The dual description in terms of the profit variable z is also possible
and does not require any modification due to the symmetrical form of the
risk inclination operator H(Y;Z) [4, 6]. The player’s strategy represents
his/her actual position on the market. To insist on a distinction, we will
define tactics as the way the player decides to change his/her strategy ac-
cording to the acquired information, experience and so on. Therefore, in
our approach, strategies are represented by vectors in Hilbert space and
tactics are linear transformations acting on strategies (not necessary unitary
because some information can drastically change the players behaviour!)

4 Diffusion of prices
Let us consider an analogue of canonical Gibbs distribution function

e�
H(Y;Z); (8)
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where we have denoted the Lagrange multiplier by 
 instead of the more
customary � for later convenience. The analysis performed in Ref. [12] al-
lows to interpret (8) as non-unitary tactics (say thermal tactics) leading to a
new strategy according to the results of Ref. [13]. Classical description of the
time evolution of a logarithm of price of an asset is known as the Bachelier
model. This model is based on supposition that the probability density of
the logarithm of price fulfills a diffusion equation with an arbitrage for-
bidding drift. Therefore we will suppose that the (quantum) expectation
value of the arithmetic mean of the logarithm of price of an asset E(Y)
is a random variable described by the Bachelier model. So the price vari-
able y has the properties of a particle performing random walk that can be
described as Brown particle at large time scales t and as Rayley particle
at short time scales 
 [14]. The superposition of these two motions gives
correct description of the behaviour of the random variable y. It seems
that the parameters t and 
 should be treated as independent variables
because the first one parameterizes evolution of the ”market equilibrium
state” and the second one parameterizes the ”quantum” process of reach-
ing the market equilibrium state [15, 16]. Therefore the parameter 
 can be
interpreted as the inverse of the temperature of a canonical portfolio (cf.
Ref.[12]) that represents strategies of traders having the same risk inclina-
tion. These traders adapt the tactics that so that the resulting strategy form
a ground state of the risk inclination operator H(Y;Z). Regardless of the
possible interpretations, adoption of the tactics (8) means that traders have
in view minimization of the risk (within the available information on the
market). It is convenient to adopt such a normalization (we are free to fix
the Lagrange multiplier) of the operator of thermal tactics so that the result-
ing strategy is its fixed point. This normalization preserves the additivity
property, R
1+
2 =R
2R
1 and allows consecutive (iterative) implementing
of the tactics. The operator of thermal tactics takes the form (!=}E=1)

R
 := e�
(H(Y;Z)� 1
2
) :

Note that the operator H(Y;Z)� 1
2
annihilate the minimal risk strategy. The

integral representation of the operator R
 (heat kernel) acting on strategies
hyj i2L2 reads:

hyjR
 i =
Z 1

�1
R
(y; y

0)hy0j idy0; (9)
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where (the Mehler formula [17])

R
(y; y
0) = 1p

�(1�e�2
)
e�

y2�y0
2

2
� (e�
y�y0)2

1�e�2
 :

R
(y; y
0) gives the probability density of Rayleigh particle changing its ve-

locity from y0 to y during the time 
. Therefore the fixed point condition
for the minimal risk strategy takes the formZ 1

�1
R
(y; y

0) e
y2�y0

2

2 dy0 = 1 :

¿From the mathematical point of view, the tactics R
 is simply an Orstein-
Uhlenbeck process. It is possible to construct such a representation of the
Hilbert space L2 so that the fixed point of the thermal tactics corresponds to
a constant function. This is convenient because the ”functional” properties
are ”shifted” to the probability measure fdy := 1p

�
e�y

2

dy. After the trans-

formation L2(dy)!L2(fdy), proper vectors of the risk inclination operator
are given by Hermite polynomials (the transformation in question reduces

to the multiplication of vectors in L2 by the function 4
p
� e

y2

2 ). Now Eq.(9)
takes the form:

^hyjR
 i =
Z 1

�1
eR
(y; y

0) ĥy0j ifdy0 ;
where eR
(y; y

0) := 1p
1�e�2


ey
02� (e�
y�y0)2

1�e�2
 :

In this way we get the usual description of the Orstein-Uhlenbeck process
in terms of a kernel eR
(y; y

0) being a solution to the Fokker-Planck equation
[18].

5 ”Classical” picture of quantum diffusion
Let us consider the integral kernel of one-dimensional exponent of the

Laplace operator e�


2

@2

@y2 representing the fundamental solution of the diffu-
sion equation

@f(y; 
)

@

=

1

2

@2f(y; 
)

@y2
:
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The kernel takes the following form

R0

(y; y

0) := 1p
2�


e�
(y�y0)2

2
 ;

and the appropriate measure invariant with respect to R0

(y; y

0) reads:

dy0 :=
1p
�

e�

y2

2
 dy :

The corresponding stochastic process is known as the Wiener-Bachelier
process. In physical applications the variables y and 
 are interpreted as
position and time, respectively (Brownian motion). Let us define the opera-
tors Xk acting on L2 as multiplications by functions xk(y(
k)) for successive
steps k=1; : : : ; n such that �


2
�
1� : : :�
n� 


2
. The corresponding (con-

ditional) Wiener measure dW 

y;y0 for y=y(�


2
) and y0=y(


2
) is given by the

operatorZ nY
k=1

xk(y(
k)) dW


y;y0 :=

�
e
�
1+
=2

2
@2

@y2X1e
�
2�
1

2
@2

@y2X2 � � � Xne�

=2�
n

2
@2

@y2
�
(y; y0) :

If the operators Xk are constant (xk(y(
k))�1) thenZ
dW



y;y0 = R0


(y; y
0) :

The Wiener measure allows to rewrite the integral kernel of the thermal
tactics in the form [17]

R
(y; y
0) =

Z
T 0 e

�

=2R

�
=2

y2(
0)�1

2
d
0

dW


y;y0 (10)

known as the Feynman-Kac formula where T 0 is the anti-time ordering op-
erator. According to the quantum interpretation of path integrals [19] we
can expand the exponent function in Eq. 10 to get ”quantum” perturba-
tive corrections to the Bachelier model that result interference of all pos-
sible classical scenarios of profit changes in time spread 
, cf. [20].2 These

2Note that in the probability theory one measures risk associated with a random
variable by squared standard deviation. According to this we could define the complex
profit operator A :=

1p
2
(Y + iZ). The appropriate risk operator would take the form

H(Ay;A) = AyA+
1

2
.
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quantum corrections are unimportant for short time intervals 
 � 1 and
the Orstein-Uhlenbeck process resembles the Wiener-Bachelier one. This
happens, for example, for ”high temperature” thermal tactics and for dis-
orientated markets (traders). In effect, due to the cumulativity of dispersion
during averaging for normal distribution �(x; �2)Z 1

�1
�(x+y; �21) �(y; �

2
2) dy = �(x; �21+ �22)

the whole quantum random walk parameterized by 
 can be incorporated
additively into mobility parameter of the classical Bachelier model. This
explain changes in mobility of the logarithm of prices in the Bachelier
model that follow, for example, from changes in the tactics temperature
or received information. From the quantum point of view the Bachelier
behaviour follows from short-time tactics adopted by the rest of the world
considered as a single trader [4]. Collected information about the market
results after time 
�1 in the change of tactics that should lead the trader
the strategy being a ground state of the risk inclination operator (localized
in the vicinity of corrected expectation value of the price of the asset in
question). This should be done in such a way that the actual price of the
asset is equal to the expected price corrected by the risk-free rate of return
(arbitrage free martingale)[21]. Both interpretations of the chaotic movement
of market prices imply that Orstein-Uhlenbeck corrections to the Bachelier
model should qualitatively matter only for large 
 scales.

6 Final remarks
Our analysis shows that traders dealing in the asset G act as a sort of
(quantum) tomograph and their strategies can be reproduced from the cor-
responding Wigner functions. It might happen that the experience acquired
in medicine, geophysics and radioastronomy would be used to investigate
intricacies of supply and demand curves. An attentive reader have certainly
noticed that we have supposed that the drift of the logarithm of the price
of an asset must be a martingale (that typical of financial mathematics [21]).
Now suppose that we live in some imaginary state where the ruler is in
a position to decree the exchange rate between the local currency G and
some other currency G0. The value of the logarithm of the price of G (de-
noted by n) is proportional to the result of measurement of position of a one
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dimensional Brown particle. Any owner of G will praise the ruler for such
policy and prefer G to G0 because the the price of G in units of G0 will, on
average, raise (the process exp n is sub-martingale). For the same reasons a
foreigner will be content with preferring G0 to G. This currency preference
paradoxical property of price drifts suggest that the common assumption
about logarithms of assets prices being a martingale should be carefully an-
alyzed prior to investment. If one measures future profits from possessing
G with the anticipated change in quotation of n then the paradox is solved
and expectation values of the profits from possessing G or G0 are equal
to zero (cf. Bernoulli’s solution to the Petersburg paradox [21]). Note that if
we suppose that the price of an asset and not its logarithms is a martingale
then the proposed model of quantum price diffusion remains valid if we
suppose that the observer’s reference system drifts with a suitably adjusted
constant velocity (in logarithm of price variable).
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