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Abstract

We discuss the time evolution of quotation of stocks and commodi-
ties and show that they form an Ising chain. We show that transaction
costs induce arbitrage risk that usually is neglected. The full analysis
of the portfolio theory is computationally complex but the latest de-
velopment in quantum computation theory suggests that such a task
can be performed on quantum computers.
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Introduction

One can simply define arbitrage as an opportunity of making profit without
any risk [1]. But this definition has one flaw: it neglects transaction costs.
And any market activity involves costs (e.g. brokerage, taxes and others de-
pending on the established rules). Therefore there is always some uncertainty
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and an arbitrageur cannot avoid risk. Below we will describe an extremely
profitable manipulation of a one asset market that certainly fit this defini-
tion and show how brokerage can induce risk. The method allows to make
maximal profits in a fixed interval [0, k] (short-selling allows to make profits
with arbitrary price changes). We will analyze the associated risk by intro-
ducing canonical arbitrage portfolios that admit Ising model like description.
Investigation of such models is difficult from the computational point of view
(the complication grows exponentially in k) but the latest development in
quantum computation seems to pave the way for finding effective methods
of solving the involved computational problems [2].

2 Profit from brokerage-free transactions

Standard descriptions of price movements, following Bachelier, use the for-
malism of diffusion theory and random variables. Such an approach to the
problem involves the assumption of constancy of the parameters of model
during the interval used for their estimation. Besides the use of the disper-
sion of the drifting logarithm of price as a measure of the risk might be
questioned. A clairvoyant that knows the future evolution of prices would
make profits from any price movement and it would be difficult to attribute
any risk to her market activity. Rather, the level of erroneousness of our deci-
sions concerning the portfolio structure should be used for that aim. Having
this in mind we have proposed a dual formulation of the portfolio theory
and market prices [3]-[6]. In this approach movements in prices are regarded
as deterministic according to their historical record and the stochastic prop-
erties are attributed to portfolios. This enables us to use the formalism of
information theory and thermodynamics. Due to the convenience of this ap-
proach we will adopt it in the current paper.

Consider a game against the Rest of the World (that is the whole mar-
ket) that Consist in alternate buying and selling of the same commodity. Let
= In - denote logarithms of the prices dictated by the market of this
Commodlty at successive moments m — 1,2,...,k. If the costs of transac-
tions are zero (or negligible) then the player’s proﬁt (actually a loss because
for future convenience we will fix the sign in (1) according to the standard



physical convention) in the interval [0, k] is given by

k
H(ny,..oong) ==Y Al - (1)
m=1

The elements of the sequence (n,,) take the value 0 or 1 if the player pos-
sesses money or the commodity at the moment m, respectively. The sequence
(n,,) defines the player’s strategy in a unique way and any (ng,...,n;) de-
scribes a pure strategy. Generalization to a more realistic situation where
more commodities are available is trivial but besides complication of formu-
las is irrelevant to the conclusion and will not be considered here.

3 The thermodynamics of portfolios

Any mixed strategy can be parameterized in a unique way by 2F weights
Pnai,...n,, glving the contributions of pure strategies. Let us consider as equiv-
alent all strategies that for a given price sequence (hy, ..., hy) bring the same
profit. We will call the equivalence classes of portfolios defined in this way
the canonical portfolios. Any canonical portfolio has maximal information
entropy

= —E(0pn, ) (2)

and can in a sense be regarded as an equilibrium state for portfolios in its
class (the player rejects any superfluous from the market point of view) in-
formation. Claude Shannon’s entropy S, ) rooted in cryptographic in-
formation theory is proportional to the minimal length of the compressed
by the greedy Huffman algorithm computer code that contains information
about the portfolio [7]. Therefore it seems to be reasonable to accept the risk
incurred of investing in a given canonical portfolio as a measure of risk for
the whole class it represents. The explicit form of a canonical portfolio can
be found by the Lagrange multipliers method that leads to the requirement
of vanishing of the following differential form:
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where 3 and (¢ are Lagrange multipliers. It follows that the sum Inp,, ., +
1+ 3 H(ny,...,n;)+( should vanish independently of the values of dp,, ., -
Therefore the equation

mpp,,ne+1+BH(n,...,n,) +(=0

allows to find the dependence of the weights p,,, ., on the profits —H (n4, ..., ny)
resulting from pure strategies:
Py, = € Hm) =L

The Lagrange multiplier ( can be eliminated by normalization of the weights.
This leads to the Gibbs distribution function [8]:

e~ BH(n1,...nk)
pnlv---vnk = 1 :
Z efﬁH(nl,...,nk)

ni,...,n;=0

Note that we have put no restriction on the properties of H(ny,...,n).
The complete information about this random variable is contained in the

statistical sum .

Z(B) = Z e—/311’(7117---7711c)7

ni,...,n;=0

because its logarithm is the cumulant-generating function (the moments of
H(ny,...,ny) are given by (—1)" % ). Physicists used to call the inverse of
the Lagrange multiplier § the temperature T'. The expectation of the profit
—E(H(ny,...,ng)) is a decreasing function of 7" and in the limit 7" — 07
it reaches its maximum. It is easy to notice that the statistical sum Z(53)

factorizes for the profit function given by (1):

1

k 1 k k 1
D DI L | S o

ni,...,n=0 ni,...,np=0 m=1 m=1 n.;,=0

This means that the profits made at different moments are independent and

there exist a risk-free pure arbitrage strategy of the form: keep the commod-

ity only if the prices are increasing (that is n,, = % ). The opposing
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strategy (n, = defining a canonical portfolio for T'— 0~ forms



a risk-free strategy for short positions. The canonical portfolio represent-
ing monkey strategies has infinite temperature, 7' = £o0o. To translate the
Markowitz portfolio theory into our thermodynamical language we should
include in an explicit way the portfolio risk measured by its second cumulant
moment (H—E(H))2 (and the corresponding Lagrange multiplier!) besides
the random variable H(ny,...,n;). For our aims it suffices to consider only

the equilibrium variant of canonical portfolios with average' risk given by
9%InZ
082

4 Non-zero transactions costs

If we take transaction costs into consideration’ then Eq. (1) should be re-
placed by the more general formula:

k
—thnm—j(nm_l@nm) — H(ny,...,ng, (3)
m=1

where ng := ny for periodic boundary conditions (otherwise ngy should be
fixed arbitrary). @ denotes addition modulo 2, and the constant j > 0 is
equal to the logarithm of the cost of a single transaction. The careful reader
will certainly notice that Eq. (3) represent an hamiltonian of an Ising chain
9] (the shift in the sequence (n,) by —3 introduces only an unimportant
constant to the formula). Now the statistical sum Z(3) cannot be factorized
in terms of contributions from separate moments. Instead we should use
transition matrices that depend on the immediate moments m—1 i m. Then
for a convenient periodic boundary conditions we arrive at the formula that
expresses Z () as a trace of the product of transition matrices:

(1)nk nlM(2)n1 ng "' 'M(k)nk—1 ng Tr H M(m) )

N
=
I
MH
=

M(m) = e:@(h«m nm—j (nm,l@nm)) )

Nm—1Nm

'Markowitz theory deals with effective portfolios that are characterized by minimal risk
at a given profit level.
2For simplicity we consider only the case of cost constant per unit of the commodity.



Unfortunately, the entries of the matrices M (m) depend on time via h,, and
the analysis of the proper value problem does not lead to any compact form of
the statistical sum (except for the uninteresting case of the constant sequence

(o).

5 The (min,+) algebra of portfolios

The definition of entropy (2) allows to find the following relation among the
entropy, average profit and the statistical sum:

EH)+ThZ=TS. (4)

The entropy is positive and bounded from above (S < k1n 2) therefore Eq. (4)
can be used to determine the strategies giving maximal profits:

Hy:=lm E(H)=—lim T'InZ = ﬂlirf log, s Z .

T—0*t T—0%
Elementary properties of logarithms®

log,(e€%) = a+b, lim log. (e* + ") = min(a, b)
e—0

imply that the full information about the most profitable strategy is given
by the product of logarithms of transition matrices

M(m)nm—l Nm * loge*B M(m)nm_l Nm — _hm Nim +] (nmfl@ nm)

if we replace addition of real numbers by the operation min of taking the
minimal element of them and multiplication of numbers by their sum (that
is by using the (min,+) algebra [10])

(M (m) x M(m—l—l)) = min(]\;[(m)nmflnm—k M(m+1),,, st ) - (B)

Nm—1MNm+1 Nm

Investigation of the matrix elements contributing to the "product" allows to
reconstruct the sequence (ng, ..., nx) and its minimal element will correspond
to the maximal available profit in the game.

3For short positions strategies (T — 07) we should find the limit lim log_(e?+ %) =
E—00

max(a, b)



6  Arbitrage risk

For a given price (hy,...,hx) let us call the potential arbitrage strategy any
strategy that if completed with element corresponding to moments &' > k
might turn out to be the strategy giving maximal profit for the hamilto-
nian H(ny,...,nk,...,np). In our case there are only four potential arbitrage
strategies if the initial value ng is not fixed. In general, in a market with N—1
commodities there are 2N such strategies. It is easy to notice that for a given
price sequence (hy, ..., h;) potential arbitrage strategy has the form

(07 ]-7 17 07 17 07 07 Ne—141, Nk—142, - - - 7”/4:) )

and can be decomposed into two parts. The first one constructed accord-
ing to the knowledge of the sequence (hq,...,h;) and the second one of the
length [. We will call [ the coherence depth. The functional dependence of
the coherence depth [ on the costs j might form an interesting market in-
dicator of structure of price movements. The final sequence (ng_;io,...,n;)
can be determined only if prices h,, are known for m > k. Therefore any
potential arbitrage strategy is an optimal strategy for a player whose profits
are known only up to the moment k. In that sense non-vanishing transaction
costs involve arbitrage risk that might be caused, for example, by the finite
maturity time of contracts or splitting of orders.

The algorithm for finding potential arbitrage strategies, the respective profits
and coherence depths is fast because uses only addition of matrices ("prod-
uct") which is linear in k. But this is insufficient for the risk and profits analy-
sis of all portfolios equivalent to potential arbitrage portfolios. To analyze the
arbitrage opportunities we should consider the whole low temperature sector
of canonical portfolios 7' (0, 7], where Er, (H) := max,,,n, (M(l) X e X
M(k))n .. because it is the minimal set that contains all potential arbitrage
portfolios. Unfortunately due to the lack of compact form of the statistical
sum, the knowledge of canonical arbitrage portfolios requires performing of
3% arithmetical operations what is a difficult computational task.

7 Simulations of canonical portfolios

Simulations are usually perceived as modelling of real processes by a Turing
machines. But complexity of various phenomena shows the limits of effective
polynomial algorithms. Is seems that the future will reverse the roles: we will
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compute by simulations perceived as measurements of appropriate (physi-
cal?) phenomena. In fact such methods have been used for centuries’. The
model discussed above can be easily associated with quantum computation
(and games). Calculations for portfolios should take into consideration all
available pure strategies whose number grows exponentially in & (2¥). There-
fore the classical Turing machines are of little use. One of the future pos-
sibilities might be exploration of nano-structures having properties of Ising
chains. Changes of local magnetic fields h,, and controlling temperature may
allow for effective determination of profits and strategies for players of various
abilities (measured by their temperature [3, 4]). The values of the parameters
n,, would be found by measurements of magnetic moments. Another effective
method might consist in using quantum parallelism for simultaneous deter-
mination of all 2¥ components of the statistical sum. Quantum computation
would use superpositions of £ qubit quantum states

1 . B & .
CP s )= Y e T2 ) ® . ® g

ni,...,n=0

with arbitrary phases ¢,, n,. Measurements of the states [¢) would allow to
identify for a given portfolio all important leading terms in the statistical sum.
The paper |11] presents analysis of the problem of simulation of an Ising chain
on a quantum computer. One can easily identify the unitary transformations
used there with transition matrices for probability amplitudes. Details of such
computations and their interpretation in term of quantum market games will
be presented in a separate paper (cf [12]).
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