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Abstract

We discuss the time evolution of quotation of stocks and commodi-

ties and show that they form an Ising chain. We show that transaction

costs induce arbitrage risk that usually is neglected. The full analysis

of the portfolio theory is computationally complex but the latest de-

velopment in quantum computation theory suggests that such a task

can be performed on quantum computers.
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1 Introduction

One can simply de�ne arbitrage as an opportunity of making pro�t without

any risk [1]. But this de�nition has one �aw: it neglects transaction costs.

And any market activity involves costs (e.g. brokerage, taxes and others de-

pending on the established rules). Therefore there is always some uncertainty
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and an arbitrageur cannot avoid risk. Below we will describe an extremely

pro�table manipulation of a one asset market that certainly �t this de�ni-

tion and show how brokerage can induce risk. The method allows to make

maximal pro�ts in a �xed interval [0, k] (short-selling allows to make pro�ts

with arbitrary price changes). We will analyze the associated risk by intro-

ducing canonical arbitrage portfolios that admit Ising model like description.

Investigation of such models is di�cult from the computational point of view

(the complication grows exponentially in k) but the latest development in

quantum computation seems to pave the way for �nding e�ective methods

of solving the involved computational problems [2].

2 Pro�t from brokerage-free transactions

Standard descriptions of price movements, following Bachelier, use the for-

malism of di�usion theory and random variables. Such an approach to the

problem involves the assumption of constancy of the parameters of model

during the interval used for their estimation. Besides the use of the disper-

sion of the drifting logarithm of price as a measure of the risk might be

questioned. A clairvoyant that knows the future evolution of prices would

make pro�ts from any price movement and it would be di�cult to attribute

any risk to her market activity. Rather, the level of erroneousness of our deci-

sions concerning the portfolio structure should be used for that aim. Having

this in mind we have proposed a dual formulation of the portfolio theory

and market prices [3]-[6]. In this approach movements in prices are regarded

as deterministic according to their historical record and the stochastic prop-

erties are attributed to portfolios. This enables us to use the formalism of

information theory and thermodynamics. Due to the convenience of this ap-

proach we will adopt it in the current paper.

Consider a game against the Rest of the World (that is the whole mar-

ket) that consist in alternate buying and selling of the same commodity. Let

hm := ln cm

cm−1
denote logarithms of the prices dictated by the market of this

commodity at successive moments m = 1, 2, . . . ,k . If the costs of transac-

tions are zero (or negligible) then the player's pro�t (actually a loss because

for future convenience we will �x the sign in (1) according to the standard
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physical convention) in the interval [0, k] is given by

H(n1, . . . , nk) := −
k∑

m=1

hmnm . (1)

The elements of the sequence (nm) take the value 0 or 1 if the player pos-

sesses money or the commodity at the momentm, respectively. The sequence

(nm) de�nes the player's strategy in a unique way and any (n1, . . . , nk) de-

scribes a pure strategy. Generalization to a more realistic situation where

more commodities are available is trivial but besides complication of formu-

las is irrelevant to the conclusion and will not be considered here.

3 The thermodynamics of portfolios

Any mixed strategy can be parameterized in a unique way by 2k weights

pn1,...,nk
giving the contributions of pure strategies. Let us consider as equiv-

alent all strategies that for a given price sequence (h1, . . . , hk) bring the same

pro�t. We will call the equivalence classes of portfolios de�ned in this way

the canonical portfolios. Any canonical portfolio has maximal information

entropy

S(pn1,...,nk
) := −E(ln pn1,...,nk

) (2)

and can in a sense be regarded as an equilibrium state for portfolios in its

class (the player rejects any super�uous from the market point of view) in-

formation. Claude Shannon's entropy S(pn1,...,nk
) rooted in cryptographic in-

formation theory is proportional to the minimal length of the compressed

by the greedy Hu�man algorithm computer code that contains information

about the portfolio [7]. Therefore it seems to be reasonable to accept the risk

incurred of investing in a given canonical portfolio as a measure of risk for

the whole class it represents. The explicit form of a canonical portfolio can

be found by the Lagrange multipliers method that leads to the requirement

of vanishing of the following di�erential form:

dS(pn1,...,nk
) − β dE(H(n1, . . . , nk)) − ζ d

1∑

n1,...,nk=0

pn1,...,nk
=

−
1∑

n1,...,nk=0

(
ln pn1,...,nk

+ 1 + β H(n1, . . . , nk) + ζ
)
dpn1,...,nk

= 0 ,
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where β and ζ are Lagrange multipliers. It follows that the sum ln pn1,...,nk
+

1+β H(n1, . . . , nk)+ζ should vanish independently of the values of dpn1,...,nk
.

Therefore the equation

ln pn1,...,nk
+ 1 + β H(n1, . . . , nk) + ζ = 0

allows to �nd the dependence of the weights pn1,...,nk
on the pro�ts−H(n1, . . . , nk)

resulting from pure strategies:

pn1,...,nk
= e−β H(n1,...,nk)−ζ−1.

The Lagrange multiplier ζ can be eliminated by normalization of the weights.

This leads to the Gibbs distribution function [8]:

pn1,...,nk
=

e−β H(n1,...,nk)

1∑
n1,...,nk=0

e−β H(n1,...,nk)

.

Note that we have put no restriction on the properties of H(n1, . . . , nk).
The complete information about this random variable is contained in the

statistical sum

Z(β) :=

1∑

n1,...,nk=0

e−β H(n1,...,nk) ,

because its logarithm is the cumulant-generating function (the moments of

H(n1, . . . , nk) are given by (−1)n dn lnZ
dβn ). Physicists used to call the inverse of

the Lagrange multiplier β the temperature T . The expectation of the pro�t

−E(H(n1, . . . , nk)) is a decreasing function of T and in the limit T → 0+

it reaches its maximum. It is easy to notice that the statistical sum Z(β)
factorizes for the pro�t function given by (1):

1∑

n1,...,nk=0

e
β

k∑
m=1

hmnm

=

1∑

n1,...,nk=0

k∏

m=1

e β hmnm =

k∏

m=1

1∑

nm=0

e β hmnm .

This means that the pro�ts made at di�erent moments are independent and

there exist a risk-free pure arbitrage strategy of the form: keep the commod-

ity only if the prices are increasing (that is nm = 1+ signhm

2
). The opposing

strategy (nm = 1− signhm

2
) de�ning a canonical portfolio for T → 0− forms
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a risk-free strategy for short positions. The canonical portfolio represent-

ing monkey strategies has in�nite temperature, T = ±∞. To translate the

Markowitz portfolio theory into our thermodynamical language we should

include in an explicit way the portfolio risk measured by its second cumulant

moment
(
H−E(H)

)2
(and the corresponding Lagrange multiplier!) besides

the random variable H(n1, . . . , nk). For our aims it su�ces to consider only

the equilibrium variant of canonical portfolios with average1 risk given by
∂2 ln Z

∂β2 .

4 Non-zero transactions costs

If we take transaction costs into consideration2 then Eq. (1) should be re-

placed by the more general formula:

−
k∑

m=1

hmnm − j (nm−1⊕ nm) → H(n1, . . . , nk) , (3)

where n0 := nk for periodic boundary conditions (otherwise n0 should be

�xed arbitrary). ⊕ denotes addition modulo 2, and the constant j > 0 is

equal to the logarithm of the cost of a single transaction. The careful reader

will certainly notice that Eq. (3) represent an hamiltonian of an Ising chain

[9] (the shift in the sequence (nm) by −1
2
introduces only an unimportant

constant to the formula). Now the statistical sum Z(β) cannot be factorized
in terms of contributions from separate moments. Instead we should use

transition matrices that depend on the immediate moments m−1 i m . Then

for a convenient periodic boundary conditions we arrive at the formula that

expresses Z(β) as a trace of the product of transition matrices:

Z(β) =
1∑

n1,...,nk=0

M(1)nk n1M(2)n1 n2 · · ·M(k)nk−1 nk
= Tr

k∏

m=1

M(m) ,

where

M(m)nm−1 nm := eβ(hm nm−j (nm−1⊕nm)) .

1Markowitz theory deals with e�ective portfolios that are characterized by minimal risk

at a given pro�t level.
2For simplicity we consider only the case of cost constant per unit of the commodity.
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Unfortunately, the entries of the matrices M(m) depend on time via hm and

the analysis of the proper value problem does not lead to any compact form of

the statistical sum (except for the uninteresting case of the constant sequence

(hm)).

5 The (min,+) algebra of portfolios

The de�nition of entropy (2) allows to �nd the following relation among the

entropy, average pro�t and the statistical sum:

E(H) + T lnZ = T S . (4)

The entropy is positive and bounded from above (S ≤ k ln 2) therefore Eq. (4)
can be used to determine the strategies giving maximal pro�ts:

H± := lim
T→0±

E(H) = − lim
T→0±

T lnZ = lim
β→±∞

loge−β Z .

Elementary properties of logarithms3

logε(ε
a εb) = a+ b , lim

ε→0+
logε(ε

a + εb) = min(a, b)

imply that the full information about the most pro�table strategy is given

by the product of logarithms of transition matrices

M̃(m)nm−1 nm := log
e−β M(m)nm−1 nm = −hm nm + j (nm−1⊕ nm)

if we replace addition of real numbers by the operation min of taking the

minimal element of them and multiplication of numbers by their sum (that

is by using the (min,+) algebra [10])

(
M̃(m)×M̃ (m+1)

)
nm−1 nm+1

:= min
nm

(
M̃(m)nm−1 nm+M̃(m+1)nm nm+1

)
. (5)

Investigation of the matrix elements contributing to the "product" allows to

reconstruct the sequence (n1, . . . , nk) and its minimal element will correspond

to the maximal available pro�t in the game.

3For short positions strategies (T → 0−) we should �nd the limit lim
ε→∞ logε(εa+ εb) =

max(a, b)
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6 Arbitrage risk

For a given price (h1, . . . ,hk) let us call the potential arbitrage strategy any

strategy that if completed with element corresponding to moments k′ > k
might turn out to be the strategy giving maximal pro�t for the hamilto-

nian H(n1, . . . , nk, . . . ,nk′). In our case there are only four potential arbitrage

strategies if the initial value n0 is not �xed. In general, in a market with N−1
commodities there are 2N such strategies. It is easy to notice that for a given

price sequence (h1, . . . , hk) potential arbitrage strategy has the form

(0, 1, 1, 0, 1, 0, 0, nk−l+1, nk−l+2, . . . , nk) ,

and can be decomposed into two parts. The �rst one constructed accord-

ing to the knowledge of the sequence (h1, . . . ,hk) and the second one of the

length l. We will call l the coherence depth. The functional dependence of

the coherence depth l on the costs j might form an interesting market in-

dicator of structure of price movements. The �nal sequence (nk−l+2, . . . , nk)
can be determined only if prices hm are known for m > k. Therefore any

potential arbitrage strategy is an optimal strategy for a player whose pro�ts

are known only up to the moment k. In that sense non-vanishing transaction

costs involve arbitrage risk that might be caused, for example, by the �nite

maturity time of contracts or splitting of orders.

The algorithm for �nding potential arbitrage strategies, the respective pro�ts

and coherence depths is fast because uses only addition of matrices ("prod-

uct") which is linear in k. But this is insu�cient for the risk and pro�ts analy-

sis of all portfolios equivalent to potential arbitrage portfolios. To analyze the

arbitrage opportunities we should consider the whole low temperature sector

of canonical portfolios T ∈ (0, T+], where ET+(H) := maxn0, nk

(
M̃(1) × · · · ×

M̃(k)
)

n0 nk
because it is the minimal set that contains all potential arbitrage

portfolios. Unfortunately due to the lack of compact form of the statistical

sum, the knowledge of canonical arbitrage portfolios requires performing of

3k arithmetical operations what is a di�cult computational task.

7 Simulations of canonical portfolios

Simulations are usually perceived as modelling of real processes by a Turing

machines. But complexity of various phenomena shows the limits of e�ective

polynomial algorithms. Is seems that the future will reverse the roles: we will
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compute by simulations perceived as measurements of appropriate (physi-

cal?) phenomena. In fact such methods have been used for centuries4. The

model discussed above can be easily associated with quantum computation

(and games). Calculations for portfolios should take into consideration all

available pure strategies whose number grows exponentially in k (2k). There-

fore the classical Turing machines are of little use. One of the future pos-

sibilities might be exploration of nano-structures having properties of Ising

chains. Changes of local magnetic �elds hm and controlling temperature may

allow for e�ective determination of pro�ts and strategies for players of various

abilities (measured by their temperature [3, 4]). The values of the parameters

nm would be found by measurements of magnetic moments. Another e�ective

method might consist in using quantum parallelism for simultaneous deter-

mination of all 2k components of the statistical sum. Quantum computation

would use superpositions of k qubit quantum states

CP 2k−1 
 |ψ〉 :=
1∑

n1,...,nk=0

e
iϕn1...nk

+
β
2

k∑
m=1

(hmnm−j (nm−1⊕nm))|n1〉 ⊗ . . .⊗ |nk〉

with arbitrary phases ϕn1...nk
. Measurements of the states |ψ〉 would allow to

identify for a given portfolio all important leading terms in the statistical sum.

The paper [11] presents analysis of the problem of simulation of an Ising chain

on a quantum computer. One can easily identify the unitary transformations

used there with transition matrices for probability amplitudes. Details of such

computations and their interpretation in term of quantum market games will

be presented in a separate paper (cf [12]).
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