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1 Introduction
One hundred years ago, a single concept changed our view of the world
forever: quantum theory was born [1]. Contemporary technology is based
on implementation of quantum phenomena as a result of this seminal idea.
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Regardless of the successes of quantum physics and the resulting quan-
tum technology social sciences persist in classical paradigm what in some
aspects can be considered as an obstacle to unification of science in the
quantum domain. Quantum theory is up to now the only scientific theory
that requires the observer to take into consideration the usually neglected
influence of the method of observation on the result of observation. Full
and absolutely objective information about the investigated phenomenon
is impossible and this is a fundamental principle of Nature and does not
result from deficiency in our technology or knowledge. Now, this situa-
tion is being changed in a dramatic way. Fascinating results of quantum
cryptography, that preceded public key cryptography [2] although not duly
appreciated at its infancy, caused that quantum information processing is
currently expanding its domain. Various proposals of applying quantum–
like models in social sciences and economics has been put forward [3]-[8]. It
seems that the numerous acquainted with quantum theory physicists who
have recently moved to finance can cause an evolutionary change in the
paradigm of methods of mathematical finance. In a quantum world we
can explore plenty of parallel simultaneous evolutions of the system and
a clever final measurement may bring into existence astonishing and clas-
sically inaccessible solutions [8]-[11]. The price we are to pay consists in
securing perfect discretion to parallel evolution: any attempt (intended or
not) at tracing the system inevitably destroys the desirable quantum effects.
Therefore we cannot expect that all quantum aspects can be translated
and explained in classical terms [12] (if such a reinterpretation was possible
the balance could be easily redressed). Attention to the very physical as-
pects of information processing revealed new perspectives of computation,
cryptography and communication methods. In most of the cases quantum
description of the system provides advantages over the classical situation.
One should be not surprised that game theory, the study of (rational) deci-
sion making in conflict situations, has quantum counterpart. Indeed, games
against nature [13] include those for which nature is quantum mechanical.
Does quantum theory offer more subtle ways of playing games? Game the-
ory considers strategies that are probabilistic mixtures of pure strategies.
Why cannot they be intertwined in a more complicated way, for exam-
ple interfered or entangled? Are there situations in which quantum theory
can enlarge the set of possible strategies? Can quantum strategies be more
successful than classical ones? All these questions have positive and some-
times bewildering answers [14, 8]. There are genuine quantum games, that
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is games that can be defined and played only in a sophisticated quan-
tum environment. Some of these quantum games could be played only in
physical laboratories but technological development can soon change this
situation (the most interesting examples emerge from cryptography). Some
classical games can be redefined so that quantum strategies can be adopted
[15]-[18]. This is ominous because someone can take the advantage of new
(quantum) technology if we are not on alert [15, 8]. We should warn the
reader that quantum games are games in the classical sense but to play a
quantum game may involve sophisticated technology and therefore theo-
retical analysis of the game requires knowledge of physical theories and
phenomena necessary for its implementation. This fact is often overlooked
and quantum game theory is wrongly put in sort of opposition to (classical)
game theory. Recently, in a series of papers [6, 19, 20] the present authors
described market phenomena in terms of quantum game theory. Agents
adopting quantum strategies can make profits that are beyond the range of
classical markets. Quantum approach shed new light on well known para-
doxes [7, 21] and computational complexity of economics [22, 23]. Besides
the properties of Nature discovered by human beings there is a whole uni-
verse of phenomena and appliances created by mankind. Therefore the
question if present day markets reveal any (observable) quantum proper-
ties, although interesting, is secondary to our main problem of finding out if
genuine quantum markets would ever come into existence. Quantum the-
ory offers a new paradigm that is able to produce a unified description of
reality. This paper is organized as follows. First, we present some basic
ideas of quantum games. Then we describe quantum market games and
review their attractive properties. Finally we present our personal view of
the further development and possible applications of this field of research.

2 Quantum market games
As we have said in the Introduction, quantum game theory investigates
conflict situations involving quantum phenomena. Therefore it exploits the
formalism of quantum theory. In this formalism strategies are vectors (called
states) in some Hilbert space and can be interpreted as superpositions of
trading decisions. Tactics and moves are performed by unitary transfor-
mations on vectors in the Hilbert space (states). The idea behind using
quantum games is to explore the possibility of forming linear combination
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of amplitudes that are complex Hilbert space vectors (interference, entan-
glement [8]) whose squared absolute values give probabilities of players
actions. It is generally assumed that a physical observable (e.g. energy,
position), defined by the prescription for its measurement, is represented
by a linear Hermitian operator. Any measurement of an observable pro-
duces with some probability an eigenvalue of the operator representing the
observable. This probability is given by the squared modulus of the coor-
dinate corresponding to this eigenvalue in the spectral decomposition of the
state vector describing the system. This is often an advantage over classical
probabilistic description where one always deals directly with probabilities.
The formalism has potential applications outside physical laboratories [3]-[6].
But how to describe complex games with say unlimited number of players
or non–constant pay–offs. There are several possible ways of accomplishing
this task. We have proposed a generalization of market games to the quan-
tum domain in Ref. [6]. In our approach spontaneous or institutionalized
market transactions are described in terms of projective operation acting
on Hilbert spaces of strategies of the traders. Quantum entanglement is
necessary (non–trivial linear combinations of vectors–strategies have to be
formed) to strike the balance of trade. This approach predicts the property
of undividity of attention of traders (no cloning theorem) and unifies the En-
glish auction with the Vickrey’s one attenuating the motivation properties
of the later [24]. Quantum strategies create unique opportunities for mak-
ing profits during intervals shorter than the characteristic thresholds for an
effective market (Brownian motion) [24]. Although the effective market hy-
pothesis assumes immediate price reaction to new information concerning
the market the information flow rate is limited by physical laws such us
the constancy of the speed of light. Entanglement of states allows to apply
quantum protocols of super–dense coding [11] and get ahead of ”classical
trader”. Besides, quantum version of the famous Zeno effect [11] controls the
process of reaching the equilibrium state by the market. Quantum arbitrage
based on such phenomena seems to be feasible. Interception of profitable
quantum strategies is forbidden by the impossibility of cloning of quantum
states. There are apparent analogies with quantum thermodynamics that al-
low to interpret market equilibrium as a state with vanishing financial risk
flow. Euphoria, panic or herd instinct often cause violent changes of market
prices. Such phenomena can be described by non–commutative quantum
mechanics. A simple tactics that maximize the trader’s profit on an effective
market follows from the model: accept profits equal or greater than the
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one you have formerly achieved on average [25].

We were led to these conclusions by consideration of the following facts:

• error theory: second moments of a random variable describe errors,

• H. Markowitz’s portfolio theory,

• L. Bachelier’s theory of options: the random variable q2 +p2 measures
joint risk for a stock buying–selling transaction ( and Merton & Scholes
works that gave them Nobel Prize in 1997).

We have defined canonically conjugate Hermitian operators (observables)
of demand Qk and supply Pk corresponding to the variables q and p char-
acterizing strategy of the k-th player. These operators act on the player’s
strategy states |ψ〉1 that have two important representations 〈q|ψ〉 (demand
representation) and 〈p|ψ〉 (supply representation) where q and p are loga-
rithms of prices at which the player is buying or selling, respectively [11, 26].
This led us to the following definition of the observable that we call the
risk inclination operator [26]2:

H(Pk,Qk) :=
(Pk − pk0)

2

2m
+
mω2(Qk − qk0)

2

2
,

where pk0 := k〈ψ|Pk |ψ〉k
k〈ψ|ψ〉k , qk0 := k〈ψ|Qk|ψ〉k

k〈ψ|ψ〉k , ω := 2π
θ

. θ denotes the characteristic
time of transaction [25, 26] which is, roughly speaking, an average time
spread between two opposite moves of a player (e. g. buying and selling
the same commodity). The parameter m>0 measures the risk asymmetry
between buying and selling positions. Analogies with quantum harmonic
oscillator allow for the following characterization of quantum market games.
One can introduce an analogue of the Planck constant, hE , that describes

1We use the standard Dirac notation. The symbol | 〉 with a letter ψ in it denoting a
vector parameterized by ψ is called a ket; the symbol 〈 | with a letter in it is called a
bra. Actually a bra is a dual vector to the corresponding ket. Therefore scalar products
of vectors take the form 〈φ|ψ〉 (bracket) and the expectation value of an operator A in
the state |ψ〉 is given by 〈ψ|Aψ〉. A common abuse of this convention consist in denoting
the wave function ψ(p) as 〈p|ψ〉. (A wave functions is a vector in Hilbert space of square
integrable functions and one associates with the variable p an eigenvector |p〉.)

2The reader that is familiar with the rudiments of quantum mechanics would certainly
notice that this operator is nothing else then the hamiltonian for quantum harmonic oscil-
lator.
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the minimal inclination of the player to risk, [Pk,Qk] = i
2π
hE . As the lowest

eigenvalue of the positive definite operator H is 1
2
hE

2π
ω, hE is equal to the

product of the lowest eigenvalue of H(Pk,Qk) and 2θ. 2θ is in fact the
minimal interval during which it makes sense to measure the profit. In
a general case the operators Qk do not commute because traders observe
moves of other players and often act accordingly. One big bid can influence
the market at least in a limited time spread. Therefore it is natural to apply
the formalism of noncommutative quantum mechanics where one considers

[xi, xk] = iΘik := iΘ εik. (3)

The analysis of harmonic oscillator in more than one dimension [27] im-
ply that the parameter Θ modifies the constant �E →

√
�2
E + Θ2 and the

eigenvalues of H(Pk,Qk) accordingly. This has the natural interpretation
that moves performed by other players can diminish or increase one’s in-
clination to take risk. Encouraged by that we asked the question Provided
that an all–purpose quantum computer is built, how would a market
cleared by a quantum computer perform? To find out we have to con-
sider quantum games with unlimited and changing number of players. A
possible approach is as follows. If a game allows a great number of players
in it is useful to consider it as a two–players game: the k-th trader against
the Rest of the World (RW). Any concrete algorithm A should allow for
an effective strategy of RW (for a sufficiently large number of players the
single player strategy should not influence the form of the RW strategy).
Let the real variable q

q := ln c−E(ln c)

denotes the logarithm of the price at which the k-th player can buy the
asset G shifted so that its expectation value in the state | ψ >k vanishes.
The expectation value of x is denoted by E(x). The variable p

p := E(ln c) − ln c

describes the situation of a player who is supplying the asset G according
to his strategy |ψ〉k. Supplying G can be regarded as demanding $ at the
price c−1 in the 1G units and both definitions are equivalent. Note that we
have defined q and p so that they do not depend on possible choices of the
units for G and $. For simplicity we will use such units that E(ln c) = 0. The
strategies |ψ〉k belong to Hilbert spaces Hk. The state of the game |Ψ〉in :=
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∑
k |ψ〉k is a vector in the direct sum of Hilbert spaces of all players, ⊕kHk.

We will define canonically conjugate hermitian operators of demand Qk and
supply Pk for each Hilbert space Hk analogously to their physical position
and momentum counterparts. This can be justified in the following way. Let
exp(−p) be a definite price, where p is a proper value of the operator Pk.
Therefore, if one have already declared the will of selling exactly at the
price exp(−p) (the strategy given by the proper state |p〉k) then it is pointless
to put forward any opposite offer for the same transaction. The capital flows
resulting from an ensemble of simultaneous transactions correspond to the
physical process of measurement. A transaction consists in a transition from
the state of traders strategies |Ψ〉in to the one describing the capital flow
state |Ψ〉out := Tσ|Ψ〉in, where Tσ :=

∑
kd
|q〉kdkd

〈q| +
∑

ks
|p〉ksks〈p| is the

projective operator defined by the division σ of the set of traders {k} into
two separate subsets {k} = {kd} ∪ {ks}, the ones buying at the price eqkd

and the ones selling at the price e−pks in the round of the transaction in
question. The role of the algorithm A is to determine the division σ of the
market, the set of price parameters {qkd

, pks} and the values of capital flows.
The later are settled by the distribution

∫ ln c

−∞

|〈q|ψ〉k|2

k〈ψ|ψ〉k
dq

which is interpreted as the probability that the trader |ψ〉k is willing to buy
the asset G at the transaction price c or lower [25]. In an analogous way the
distribution ∫ ln 1

c

−∞

|〈p|ψ〉k|2

k〈ψ|ψ〉k
dp

gives the probability of selling G by the trader |ψ〉k at the price c or greater.
These probabilities are in fact conditional because they describe the situ-
ation after the division σ is completed. If one considers the RW strategy it
make sense to declare its simultaneous demand and supply states because
for one player RW is a buyer and for another it is a seller. To describe such
situation it is convenient to use the Wigner formalism 3 [28]. The pseudo–
probability W (p, q)dpdq on the phase space {(p, q)} known as the Wigner

3Actually, this approach consists in allowing pseudo–probabilities into consideration.
From the physical point of view this is questionable but for our aims its useful, c.f. the
discussion of the Giffen paradox [21].
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function is given by

W (p, q) := h−1
E

∫ ∞

−∞
ei�

−1
E px 〈q + x

2
|ψ〉〈ψ|q − x

2
〉

〈ψ|ψ〉 dx

= h−2
E

∫ ∞

−∞
ei�

−1
E qx 〈p+ x

2
|ψ〉〈ψ|p− x

2
〉

〈ψ|ψ〉 dx,

where the positive constant hE = 2π�E is the dimensionless economical
counterpart of the Planck constant. Recall that this measure is not pos-
itive definite except for the cases presented below. In the general case
the pseudo–probability density of RW is a countable linear combination
of Wigner functions, ρ(p, q) =

∑
n wnWn(p, q), wn ≥ 0,

∑
n wn = 1. The

diagrams of the integrals of the RW pseudo–probabilities (see Ref. [25])

Fd(ln c) :=

∫ ln c

−∞
ρ(p = const., q)dq

(RW bids selling at exp (−p))
and

Fs(ln c) :=

∫ ln 1
c

−∞
ρ(p, q = const.)dp

(RW bids buying at exp(q)) against the argument ln c may be interpreted
as the dominant supply and demand curves in the Cournot convention, re-
spectively [25]. Note, that due to the lack of positive definiteness of ρ, Fd
and Fs may not be monotonic functions. Textbooks on economics give ex-
amples of such departures from the law of supply (work supply) and law of
demand (Giffen assets) [29]. We proposed to call an arbitrage algorithm re-
sulting in non positive definite probability densities a giffen. The following
subsection describe shortly various aspects of quantum markets.

2.1 Quantum Zeno effect
It has been experimentally verified that sufficiently frequent measurement
can slow down (accelerate) the dynamics of a quantum proces, what is
called the quantum (anti–)Zeno effect [30]. Analogous phenomenon can
be observed in quantum games. If the market continuously measures the
same strategy of the player, say the demand 〈q|ψ〉, and the process is re-
peated sufficiently often for the whole market, then the prices given by the
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algorithm A do not result from the supplying strategy 〈p|ψ〉 of the player.
The necessary condition for determining the profit of the game is the tran-
sition of the player to the state 〈p|ψ〉 [25]. If, simultaneously, many of the
players change their strategies then the quotation process may collapse due
to the lack of opposite moves. In this way the quantum Zeno effects explain
stock exchange crashes. Effects of this crashes should be predictable be-
cause the amplitudes of the strategies 〈p|ψ〉 are Fourier transforms of 〈q|ψ〉.
Another example of the quantum market Zeno effect is the stabilization of
prices of an asset provided by a monopolist.

2.2 Eigenstates of Q and P
Let us suppose that the amplitudes for the strategies 〈q|ψ〉k or 〈p|ψ〉k have
divergent integrals of their modulus squared. Such states live outside the
Hilbert space but have the natural interpretation as the desperate will of
the k-th player of buying (selling) of the amount dk ( sk) of the asset G. So
the strategy 〈q|ψ〉k = 〈q|a〉 = δ(q, a) means, in the case of classifying the
player into the set {kd}, refusal of buying cheaper than at c = ea and the
will of buying at any price equal or higher than ea. In the case of a ”mea-
surement” in the set {kd} the player declares the will of selling at any price.
The above interpretation is consistent with the Heisenberg uncertainty re-
lation. The strategies 〈q|ψ〉2 = 〈q|a〉 (or 〈p|ψ〉2 = 〈p|a〉) do not correspond
to the RW behaviour because the conditions d2, s2 > 0, if always satisfied,
allow for unlimited profits (the readiness to buy or sell G at any price).
The appropriate demand and supply functions give probabilities of com-
ing off transactions in a game when the player use the strategy 〈p|const〉
or 〈q|const〉 and RW, proposing the price, use the strategy ρ [6, 25]. The
authors have analyzed the efficiency of the strategy 〈q|ψ〉1 = 〈q| − a〉 in
a two–player game when RW use the strategy with squared modulus of
the amplitude equal to normal distribution [25]. The maximal intensity of
the profit [25] is equal to 0.27603 times the variance of the RW distribu-
tion function. Of course, the strategy 〈p|ψ〉1 = 〈p|0, 27603〉 has the same
properties. In such games a=0.27603 is a global fixed point of the profit
intensity function. This may explain the universality of markets on which a
single client facing the bid makes up his/hers mind. Does it mean that such
common phenomena have quantal nature? The Gaussian strategy of RW
[31] can be parameterized by a temperature–like parameter T = β−1. Any
decrease in profits is only possible by reducing the variance of RW (i.e.
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cooling). Market competition is the mechanism responsible for the risk flow
that allows the market to attain the ”thermodynamical” balance. A warmer
market influences destructively the cooler traders and they diminish the
uncertainty of market prices.

2.3 Correlated coherent strategies
We will define correlated coherent strategies as the eigenvectors of the
annihilation operator Ck [32]

Ck(r, η) :=
1

2η

(
1 +

ir√
1 − r2

)
Qk + iηPk,

where r is the correlation coefficient r ∈ [−1, 1], η > 0. In these strategies
buying and selling transactions are correlated and the product of disper-
sions fulfills the Heisenberg–like uncertainty relation ∆p∆q

√
1 − r2 ≥ �E

2

and is minimal. The annihilation operators Ck and their eigenvectors may
be parameterized by ∆p = �E

2η
, ∆q = η√

1−r2 , and r. This leads to following
form of the correlated Wigner coherent strategy

W (p, q)dpdq =
1

2π∆p∆q

√
1 − r2

e
− 1

2(1−r2)

(
(p−p0)2

∆2
p

+
2r(p−p0)(q−q0)

∆p∆q
+

(q−q0)2

∆2
q

)
dpdq .

They are not giffens. It can be shown, following Hudson [33], that they
form the set of all pure strategies with positive definite Wigner functions.
Therefore pure strategies that are not giffens are represented in phase space
{(p, q)} by gaussian distributions.

2.4 Mixed states and thermal strategies
According to classics of game theory [34] the biggest choice of strategies is
provided by the mixed states ρ(p, q). Among them the most interesting are
the thermal ones. They are characterized by constant inclination to risk,
E(H(P,Q)) = const and maximal entropy. The Wigner measure for the
n-th exited state of harmonic oscillator has the form [35]

Wn(p, q)dpdq =
(−1)n

π�E
e
− 2H(p,q)

�Eω Ln
(4H(p, q)

�Eω

)
dpdq,
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where Ln is the n-th Laguerre polynomial. The mixed state ρβ deter-
mined by the Wigner measures Wndpdq weighted by the Gibbs distribution
wn(β) := e−βn�Eω∑∞

k=0 e
−βk�Eω has the form

ρβ(p, q)dpdq : =

∞∑
n=0

wn(β)Wn(p, q)dpdq

=
ω

2π
x e−xH(p,q)

∣∣∣
x 2

�Eω
tanh(β

�Eω

2
)
dpdq.

So it is a two dimensional normal distribution. It easy to observe that by
recalling that 1

1−t e
xt

t−1 =
∑∞

n=0Ln(x)tn is the generating function for the La-
guerre polynomials. It seems to us that the above distributions should deter-
mine the shape of the supply and demand curves for equilibrium markets.
There are no giffens on such markets. It would be interesting to investigate
the temperatures of equilibrium markets. In contrast to the traders temper-
atures [31] which are Legendre coefficients and measure ”trader’s qualities”
market temperatures are related to risk and are positive. The Feynman path
integrals may be applied to the Hamiltonian to obtain equilibrium quantum
Bachelier model of diffusion of the logarithm of prices of shares that can
be completed by the Black–Scholes formula for pricing European options
[36].

2.5 Quantum auctions and bargaining
After tasting the exotic flavour of quantum market games one may wish to
distinguish the class of quantum transactions (q-transactions) that is q-games
without institutionalized clearinghouses. This class includes quantum bar-
gaining (q-bargaining) and quantum auctions (q-auction). The participants
of a q-bargaining game will be called Alice (A) and Bob (B). We will sup-
pose that they settle on beforehand who is the buyer (Alice) and who is
the seller (Bob). A two–way q-bargaining that is a q-bargaining when the
last condition is not fulfilled can be treated analogously. Alice enter into
negotiations with Bob to settle the price for the transaction. Therefore the
proper measuring apparatus consists of the pair of traders in question. In
q-auction the measuring apparatus consists of a one side only, the initiator
of the auction. We showed [6] that the players strategies can be described
in terms of polarizations, that is the states in a two–dimensional Hilbert
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space. If the player formulates the conditions of the transaction we say she
has the polarization  (and is in the state |−→r 〉A = |〉). In q-bargaining this
means that she puts forward the price. In the opposite case, when she de-
cides if the transaction is made or not, we say she has the polarization |〉.
(She accepts or not the conditions of the proposed transaction.) There is an
analogy of the isospin symmetry in nuclear physics which says that nucleon
has two polarization states: proton and neutron. The vectors (|〉, |〉) form
an orthonormal basis in Hs , the linear hull of all possible Alice polarization
states. The player 1 proposes a price and the player -1 accepts or reject the
proposal. Therefore their polarizations are |〉 and |〉, respectively so the
q-bargaining has the polarization |〉-|〉[6, 19]. The transaction in question
is accomplished if the obvious rationality condition is fulfilled

[q + p ≤ 0] ,

where the convenient Iverson notation [37] is used ([expression] denotes
the logical value (1 or 0) of the sentence expression) and the parameters
p = ln c-1 and −q = ln c1 are random variables corresponding to prices
at which the respective players withdraw, the withdrawal prices. The
variables p and q describe (additive) profits resulting from price variations.
Their probability densities are equal to squared absolute values of the ap-
propriate wave functions 〈p|ψ〉-1 and 〈q|ψ〉1 (that is their strategies). Note
that the discussed q-bargaining may result from a situation where several
players have intention of buying but they were outbid by the player 1
(his withdrawal price c1 was greater than the other players ones, c1 > ck,
k = 2, . . . , N ). This means that all part in the auction behave like fermions
(e.g. electrons) and they are subjected to a sort of Pauli exclusion princi-
ple according to which two players cannot occupy the same state. This
surprising statement consist in noticing that the transaction in question is
made only if the traders have opposite polarizations (and even that is not a
guarantee of the accomplishment). The fermionic character of q-bargaining
parts was first noted in [6] in a slightly different context. If at the outset of
the auction there are several bidding players then the rationality condition
takes the form

[qmin + p ≤ 0]

where qmin := min
k=1,...,N

{qk} is the logarithm of the highest bid multiplied by

−1. According to Ref. [6] the probability density of making the transaction
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with the k-th buyer at the price ck = e−qk is given by

dqk
|〈qk|ψk〉|2
〈ψk|ψk〉

N∏
m=1
m	=k

∫ ∞

−∞
dqm

|〈qm|ψm〉|2
〈ψm|ψm〉

∫ ∞

−∞
dp

|〈p|ψ-1〉|2
〈ψ-1|ψ-1〉

[ qk = min
n=1,...,N

{qn} ] [qk+p ≤ 0] .

(1)
The seller is not interested in making the deal with any particular buyer
and the unconditional probability of accomplishing the transaction at the
price c is given by the sum over k = 1, . . . , N of the above formula with
qk = − ln c. If we neglect the problem of determining the probability am-
plitudes in (1) we easily note that the discussed q-bargaining is in fact an
English auction (first price auction), so popular on markets of rare goods. It
is interesting to note that the formula (1) contains wave functions of payers
who were outbid before the end of the bargaining (cf the Pauli exclusion
principle). The probability density of ”measuring” of a concrete value q of
the random variable q characterizing the player, according to the proba-
bilistic interpretation of quantum theory, is equal to the squared absolute
value of the normalized wave function describing his strategy

|〈q|ψk〉|2
〈ψk|ψk〉

dq .

Physicists normalize wave functions because conservation laws require
that. Therefore the trivial statement that if a market player may be per-
suaded into striking a deal or not is a matter of price alone, corresponds to
the physical fact that a particle cannot vanish without any trace. The anal-
ysis of an English q-auction with reversed roles that is with selling bidders
is analogous. The case when the polarization of the q-auction is changed
to |〉-|〉 is more interesting. In this case the player -1 reveals her with-
drawal price and the player 2 accepts it (as the rest of the players do) or
not. Such an auction is known as the Vickrey’s auction (or the second price
auction). The winner is obliged to pay the second in decreasing order price
from all the bids (and the withdrawal price of the player -1). In the quan-
tum approach English and Vickrey’s auctions are only special cases of a
phenomenon called q-auction. In the general case both squared amplitudes
|〈-|-〉|2 and |〈-|-〉|2 are non–vanishing so we have to consider
them with weights corresponding to these probabilities. Such a general q-
auction does not have counterparts on the real markets. It should be very
interesting to analyse the motivation properties of q-auctions eg finding out
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when the best strategy is the one corresponding to the player’s valuation
of the good. If we consider only positive definite probability measures then
the bidder gets the highest profits in Vickrey’s auction using strategies with
public admission of his valuation of the auctioned good. But it might not
be so for giffen strategies because positiveness of measures is supposed in
proving the incentive character of Vickrey’s auctions [38]. The presence of
giffens on real markets might not be so abstract as it seems to be. Captain
Robert Giffen who supposedly found additive measures not being posi-
tive definite but present on markets in the forties of the XIX century [39]
probably got ahead of physicists in observing quantum phenomena. Such
departures from the demand law, if correctly interpreted, does not cause
any problem neither for adepts nor for beginners. Employers have prob-
ably always thought that work supply as function of payment is scarcely
monotonous. The distinguished by their polarization first and second price
auctions have analogues in the Knaster solution to the pragmatic fair di-
vision problem (with compensatory payments for indivisible parts of the
property) [40]. Such a duality might also be found in election systems that
as auctions often take the form of procedures of solving fair division prob-
lems [41]. It might happen that social frustrations caused by election systems
would encourage us to discuss such topics.

3 Conclusions
The commonly accepted universality of quantum theory should encourage
physicist in looking for traces of quantum world in social phenomena. We
envisage markets cleared by quantum computer. We hope that the sketchy
analysis presented above would allow the reader to taste the exotic flavours
of quantum markets. A quantum theory of markets provides new tools
that can be used to explain of the very involved phenomena including
interference of (quantum) strategies [42] and diffusion of prices [43]. The
research into the quantum nature of games may offer solutions to very
intriguing paradoxes present in philosophy and economics. For example,
the Newcomb’s paradox analyzed in Ref. [7] suggests various ones. There
are quantum games that live across the border of our present knowledge.
For example, consider some classical or quantum problem X . Let us define
the game kXcl: you win if and only if you solve the problem (perform the
task) X given access to only k bits of information. The quantum counterpart
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reads: solve the problem X on a quantum computer or other quantum
device given access to only k bits of information. Let us call the game
kXcl or kXq interesting if the corresponding limited information–tasks are
feasible. Let OckhamXcl (OckhamXq) denotes the minimal k interesting
game in the class kXcl (kXq). Authors of the paper [44] described the
game played by a market trader who gains the profit P for each bit (qubit)
of information about her strategy. If we denote this game by MP then
OckhamM 1

2
cl = 2M 1

2
cl and for P > 1

2
the game OckhamMPcl does not

exist. They also considered the more effective game 1M 2+
√

2
4

q for which
OckhamM 2+

√
2

4
q �= 1M 2+

√
2

4
q if the trader can operate on more then one

market. This happens because there are entangled strategies that are more
profitable [45]. There are a lot of intriguing questions that can be ask, for
example for which X the meta–game Ockham(OckhamXq)cl can be solved
or when, if at all, the meta–problem Ockham(OckhamXq)q is well defined
problem. Such problems arise in quantum memory analysis [46]. We would
like to stress that this field of research undergoes an eventful development.
Therefore now it is difficult to predict which results would turn out to be
fruitful and which would have only marginal effect.

Recent research on the (quantum) physical aspects of information pro-
cessing should result in a sort of total quantum paradigm and we dare to
say that quantum game approach became sooner or later a dominant one.
Therefore we envisage markets cleared by quantum algorithms (comput-
ers)4.
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