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Abstract
We argue that the recently published by Przystawa and Wolf model of

the Bagsik financial oscillator is oversimplified and unrealistic. We propose
and analyze a refined explanation of this rare financial phenomenon. We
have found an example that results in profitability about 45 000 times bigger
than that of the Przystawa and Wolf model.

PACS numbers: 02.50.-r, 02.50.Le, 05.70.-a

1 Introduction
In a recent paper [1] Przystawa and Wolf discuss an algorithm (denoted be-
low as sbO) that, if exploited in the plunged in hyper-inflation Poland of the
early nineties, should bring enormous profits. This algorithm make the most
of constancy of the exchange ratio between two currencies, dollar (USD) and
Polish złoty (PLN), and interest rates. Przystawa and Wolf suggest that Polish
contractor Bagsik1 made his enormous fortune by exploiting such mechanisms
(a version of financial oscillator denoted sbO0:7, see below). We would like to
argue that this is not justified because the real profits from the use of the oscilla-
tor sbO0:7 do not result in substantial magnification of the capital. We propose

1It was A. Gąasiorowski who first used the term financial oscillator. It is usually referred to as
the Bagsik oscillator in Polish literature and we decided to follow this convention although the term
Bagsik-Gąsiorowski oscillator is more appropriate.
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a different explanation of the Bagsik rapid enrichment based on a different cap-
ital source (the appropriate oscillator will be denoted as sbO1:93). Due to the
polemic character of the article we will refer to numerical data and time spread
discussed in Ref. [1].

2 Logarithmic discount rates
To determine discount rates (or interest rates for deposits) in the interval be-
tween the moments k;m 2 N, k < m banks use a discount factor U(k;m) 2 R+ .
The lengths of the intervals in question are not necessary the same if mea-
sured in physical units of time. This means that the bank lends the amount
of 1 at the moment k on return of the amount of U

c
(k;m) at the moment m.

Analogously, if the amount of 1 is deposited at the moment k then the bank
gives back the amount of U

d
(k;m) at the moment m. Profitability of bank ac-

tivities implies the inequality U
c
(k;m) > U

d
(k;m). The discount factor is a

monotone function, U(m;m+k) > 1, and fulfills the condition of multiplicativity
U(k; l)U(l;m) = U(k;m). Of course, U(m;m) = 1. It is convenient to make use
of the notion of logarithmic rates R(k;m) := lnU(k;m) because their properties
are more legible and calculations are simpler. The appropriate properties take
the form R(m;m+ k) > 0, R(m;m) = 0, and

R(k; l) +R(l;m) = R(k;m): (1)

3 The slow bond oscillator
Let us suppose that an arbitrageur has at his disposal two banks, A and B. The
first one is ready to lend on the basis of the logarithmic rate R

A
(k;m). The

second one accepts deposits on the basis of the rate R
B
(k;m). In addition let

R
A
(m;m+k)� R

B
(m;m+k). The arbitrageur aims at borrowing capital from

A and depositing the capital in B so that the financial gain will be the highest
possible. The authors of Ref. [1] focused their attention on the following algo-
rithm (sbO) which, in their opinion, should explain Bagsik unheard-of financial
achievements in Poland during 1990.

moment 0: The banker A estimates that the assets of X (say his premises)
would be worth 1 at the moment N , so he lends him the amount of
e
�RA(0;N) (say a mortgage loan). The arbitrageur X is obliged to give
back A the amount of 1 at the moment N . The banker B offers for a
deposit of 1 at the moment 0 the amount of eRB(0;N) to be paid at the
moment N . This means that the banker B enters into the obligation
to pay X

p0 := e
RB(0;N)�RA(0;N) (2)

at the moment N which is testified by issuing an appropriate bond to X .

moment k: By accepting the new bond, the banker A finds out that the
present revealed assets of X (he already has bonds for previously
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revealed assets) will be worth p
k�1 at the moment N . Therefore A

pays the amount of e�RA(k;N)
p
k�1 to X . The banker B, following the

above rules, accepts the deposit of e�RA(k;N)
p
k�1 and issues the bond

to return the additional amount of

p
k
:= e

RB(k;N)�RA(k;N)
p
k�1 (3)

to X at the moment N .

The multiple issued by the banker B bond (certificate) allows the arbitrageur
X to retrieve the stated amount of money from B. The recurrence formula
(3) states the banal fact that to know the figures stated on the k-th bond
it is sufficient to multiply the amount from the previous one by the capital-
ization factor e

RB(k;N)�RA(k;N). The initial condition (2) leads to p
N�1 =

e

P
N�1

m=0

�
RB(m;N)�RA(m;N)

�
stated on the last, issued just before end the arbi-

trage, bond. This is the only one bond that is not forwarded to A. The rest of
the issued by B bonds is used for securing the obligations of X with respect
to A originated at the moments k = 1; : : : ; N�1. If X buys a mortgage pledge
from A at the moment N then he has, besides the premises, the funds

e

P
N�1

m=0

�
RB(m;N)�RA(m;N)

�
� 1 (4)

at his disposal. It is worth noticing that, the banks A and B may be physically

different market institutions. The whole property ofX is worth e
P
N�1

m=0

�
RB(m;N)�RA(m;N)

�

at the moment N so the logarithmic rate of return of the arbitrage is

R
BA

(0; N) =

N�1X
m=0

�
R
B
(m;N)�R

A
(m;N)

�
: (5)

We set it in a different type to denote that R
BA

are not additive. The lack of
additivity characterizes all aggressive techniques of arbitrage. The additivity of
the rates R(k;m) allows to simplify the formula (5)

R
BA

(0; N) =

N�1X
m=0

N�1X
k=m

�
R
B
(k; k + 1)�R

A
(k; k + 1)

�
(6)

=

NX
k=1

k

�
R
B
(k � 1; k)�R

A
(k � 1; k)

�
: (7)

If all the intervals are uniformly distributed, that is the differences R
B
(k �

1; k)�R
A
(k�1; k) are equal then R

B
(k�1; k)�R

A
(k�1; k) = 1

N

�
R
B
(0; N)�

R
A
(0; N)

�
and the appropriate rate R

BA
(0; N) is given by

R
BA

(0; N) =
N + 1

2

�
R
B
(0; N)�R

A
(0; N)

�
: (8)
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We will call such oscillators uniform sbOs. The assets of X who accomplishes
a uniform sbO are given by the formula (cf. (4))

e
N+1

2
(RB(0;N)�RA(0;N))

� 1 (9)

which is equivalent to the one given in Ref. [1] (Eq. (16)). If R
B
(0; N) is the

highest available in discussed interval deposit rate then the uniform arbitrage is
profitable under the condition that R

BA
(0; N) is greater than R

B
(0; N) which

implies N >
RB(0;N)+RA(0;N)

RB(0;N)�RA(0;N)
. Let us note that the profit given by (5) may

be achieved only if there is a closing warranty (CW ), that is a possibility of
instantaneous transfer of all bonds and the related capitals at the moment N .

4 Bagsik oscillator
A physicist would probably say that the presented method of arbitrage (sbO)
resembles less an oscillator than the repeating mechanism of a mysterious heat
engine driven by two thermal baths with the temperatures R

B
and R

A
, respec-

tively. The highest efficiency of such engines (without changing constructions)
is reached for R

B
= Rmin and R

A
= Rmax that is for the, respectively, lowest

and highest rates of return during a given interval. Przystawa and Wolf claim
that the mechanism sbO0:8�0:1, with the thermal bath in the shape of a deposit
in a Polish bank (the currency PLN, the one year rate R

B
= 0:8) and the reser-

voir created by a credit (the currency USD and the one year rate R
B

= 0:1).
The exchange ratio of PLN to USD was constant during that time. The two
currencies were needed only to show that the accomplishing of the oscillator
was impossible without the constancy of exchange ratio. They forgot that there
were available more interesting ”financial thermostats” at that moment. The
present authors think that the hottest Rmax and the coldest Rmin rates were
offered by the hyper-inflation itself. The average prices of non-edible goods
raised by 591.2% according to the official state data [2] which gives the loga-
rithmic rate R

�
equal to ln 6:912 ' 1:93 (with respect to PLN). The prices of

services raised much more: by 780.7% which gives Rmax = ln 8:807 ' 2:18. The
rate R

A
= Rmin = 0 was also available: it was possible not to repay an interest

free debt in PLN because the undergoing revolutionary changes Polish law did
not offer any mechanism of execution of debts revalued by the inflation rate at
that moment. Let us select the prices of non-edible goods as the ”heat source”
of the oscillator R

b
= R

�
(it seems to be difficult to use services for doing this).

The so defined oscillator sbO1:93 had a closing warranty build-in. The bank A

formed sellers and the role of the bank B was performed by a belonging to X

firm. X simply put off the due payment for the purchased goods till the moment
N . The owned by X firm formed a reservoir of goods and immovables any
other activity (e. g. production) was inessential. At the moment N the execution
of CW was immediate: one queue formed horrified creditors and a second one
formed consumers wanting to get rid of theirs cash. The circle was closed by
the lawful deferred payment (one could induce directors of state-owned firms to

4



enter such formally legal but tragic in effects contracts). The generally accessible
archive of the Polish internet journal Donosy [3] reports that at the beginning
of the year 1990 (2 of January) the interests of demand deposits were at the
level of 7% a year and the three-tears deposits – 38%. Only at the end of the
year (13 of December) the interest rates of the one-year deposits raised to 60%.
Therefore if we take that a PLN deposit gave a return of 50% on average in 1990
the number would be overestimated. The logarithmic rate of such deposits was
not R

B
(0; N) = 0:8, as is supposed in the Ref. [1], but ln 1:5 ' 0:4. This means

that the suggested mechanism led to Bagsik’s return described by the oscillator
sbO0:3 and not by sbO0:7. The profits given by the formula (4) for the oscillators
sbO0:7, sbO0:3 and sbO1:93 are presented in the Table 1. The first column is also
given in the Ref. [1]. Note that for N = 12 the return of sbO1:93 is about 45 000
times bigger than that of sbO0:3 !

RB(0;N)�RA(0;N)= 0:7 0:3 1:93

N = 1 1.0138 0.34986 5.8895
2 1.8577 0.56831 17.084
3 3.0552 0.82212 46.465
4 4.7546 1.1170 123.59
5 7.1662 1.4596 326.01
6 10.588 1.8577 857.34
7 15.445 2.3201 2252.0
8 22.336 2.8574 5912.5
9 32.116 3.4817 15521

10 45.993 4.2070 40740
11 65.686 5.0497 1.0694�105

12 93.632 6.0287 2.8069�105

Table 1: Profits made from a unit of capital for the arbitrage sbO

5 The slow cash oscillator
An arbitrageur performing sbO wastes a substantial amount of time between
the moments k�1 and k (k = 1; : : : ; N�1) on delivering bonds to the banker A.
We will denote the average amount of time needed for this delivery by �

B!A
.

The authors of [1] suggest the possibility of realization of an arbitrage sbO in
Poland of 1990 if the bank A gives credits in USD and the bank B accepts
deposits in PLN. Only the bank B could have operated on the territory of
Poland because credits in USD where then unavailable. Therefore, for obvious
reasons, the interval �

B!A
was considerably shorter than �

A!B
during which

the arbitrager X transports, avoiding interference from the more and more

5



suspicious customers, more and more capital from A to B in the shape of goods
or cash. (The interval �

A!B
is equal zero for the discussed in the previous

section oscillator sbO1:93 because B = X .) We will ignore the necessity of
showing the source of CW and suppose that it was known to the authors of the
Ref. [1]. If �

A!B
� �

B!A
' 0 then the algorithm sbO should be replaced by

the following one (scO):

moment 0: The banker A estimates that the assets of X would be worth 1
at the moment N , so he lends him the amount of p0 = e

�RA(0;N). The
arbitrageur X is obliged to give back A the amount of 1 at the moment
N .

moment k: The banker B offers for a deposit of p
k�1 at the moment k the

amount of eRB(k;N)
p
k�1 in the form of a bond becoming due at the

moment N . If k < N �1 then the banker A takes this bond as a
deposit and pays to X the amount p

k
:= e

RB(k;N)�RA(k;N)
p
k�1.

If we take for granted the existence of CW then by repeating the calculation
performed for sbO we easily get the profit made by X from the arbitrage

e
RB(N�1;N)

N�2Y
k=1

e
RB(k;N)�RA(k;N)

e
�RA(0;N)

� 1

= e

P
N�1

k=0
(RB(k;N)�RA(k;N))

e
RA(N�1;N)�RB(0;N)

� 1:

The profit is smaller than R
BA

(0; N) because it equals

R
BA

(0; N)� (R
B
(0; N)�R

A
(N � 1; N)): (10)

In the case of a uniform arbitrage the logarithmic rate of return is N+1
2

(R
B
(0; N)�

R
A
(0; N))�R

B
(0; N)+RA(;N)

N

. Therefore the hypothetical two-currencies vari-
ant of the Bagsik oscillator with CW should result in smaller profits than those of
the oscillator sbO0:3 (presented in the Table 1). The non-multiplicative capitaliza-
tion coefficient, U(0; N), for scO0:3 (N � 12) is smaller 26-36% than the one corre-
sponding to the arbitrage sbO0:3 (eRA(0;1)�RB(0;1) ' 0:741, eRA(11;12)�RB(0;12) '
0:676). Effectively, the profit is the same as in sbO0:3 but shortened by one step.
We may consider a whole one-parameter family of arbitrage procedures �O
for N full cycles, where � 2 [0; 1] is the quotient of lengths of the characteristic
intervals, � = �A!B

�B!A

, �
A!B

+�
B!A

=1. For example, in the case when X obtains
from A a letter of credit ( a document issued by A authorizing the bearer to
draw money from another bank at once) then the intervals �

A!B
i �

B!A
may

be equal (the arbitrage 1
2
O). We have already discussed two representatives

of the family �O because 0O = sbO and 1O = scO. Note that the logarithmic
rate of return is a decreasing function of �. This follows from the fact that the
greater the � is, the smaller is the length of the whole time of using the heat
reservoir B. So the algorithms sbO and scO give the extreme values of profits
possible by carrying out one of the procedures �O.
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6 The temperature of an arbitrage
The present authors have proposed to use temperature, that is the Lagrange
multiplier T�1 as a measure of the financial gain [4]. This parameter allows to
compare financial achievements on different market and during different time
scales. The thermodynamically conjugated to the temperature entropy allows to
measure qualities of a financial expert or adviser. The market analyzed in this
paper corresponds to a two level physical system with the energies �Rmax end
�Rmin. We assign, according to the maximal entropy principle, to groups of
investors achieving equal logarithmic rates of return R a representative canon-
ical ensemble. The temperature T�1 of the ensemble is given by the following
function of R [4]

T
�1
R

= ln
R�Rmin

Rmax �R
; (11)

where Rmin and Rmax are the lowest and the highest rates in the considered
interval, respectively. We may use the formula (11) for all real values of R
after fixing the branch of the logarithm. For the rates R =2 [Rmin; Rmax] we get

T
�1
R

= ln
�
(�1) �

R�Rmin

R�Rmax

�
= i� + ln

R�Rmin

R�Rmax

: (12)

Note that contrary to the additive rates case [4] the presently discussed arbitrage
should be prized the more the lower the real part of the temperature T

�1 is.
May by we should call financial oscillators only those arbitrages with non-zero
imaginary parts of the temperature? If we determine the proposed temperatures
for the oscillators sbO0:3 (the second column of the Table 1) and sbO1:93 (the
third column of the Table 1) then we get the results presented in the Table 2.

RB(0;N)�RA(0;N)= 0:3 1:93

N = 1 -1.8352 2.0438= T
�1
�

2 -1.3466 i�+1.3985
3 -0.96825 i�+0.83187
4 -0.64536 i�+0.60114
5 -0.35222 i�+0.47243
6 -0.073428 i�+0.38968
7 0.20252 i�+0.33182
8 0.48643 i�+0.28903
9 0.79113 i�+0.25606

10 1.13565 i�+0.22988
11 1.5554 i�+0.20857
12 2.1375 i�+0.19089

Table 2: Temperatures T�1 of the sbO arbitages
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Negative temperatures characterize financial activities unprofitable even on a
developed efficient market [4]. It is worth to note that the temperatures T

�1

lower than T
�1
�

= 2:0438 (see the Table 2) also correspond to disadvanta-
geous achievements because during that period the temperature T�1

�
was easily

achieved by every citizen of Poland who possessed goods of everyday use (and
no local money). Therefore the first column of the Table 1 presents doubtful
financial achievements. For scO0:3 with CW the profit is positive only if N=13
what call in question the possibility of using this oscillator as a tool in making
capital in Poland of the early nineties. And we have neglected the substantial
starting and clearing costs of such an arbitrage! It would be interesting to know
if and to what extent arbitrages of the type sbO0:3 implemented by Polish banks
served as a driving force of the hyper-inflation. Such an oscillator might consist
in giving credits in Polish złoty and accepting deposits in foreign bills. The in-
flation was brought under control simultaneously with the exhaustion of foreign
currencies savings of the population. It seems that this substantially slackened
the inflation.

7 Concluding remarks
There is a well known Polish ex-minister, a professor of physics, who did not
notice a deficit of a billion in the department under his control though it was
noticed by his sister, a provincial teacher. We remember public guesses con-
cerning the sources of Bagsik’s fortune. We hope that our arguments limit the
inclination towards drawing hasty conclusions from oversimplified models of
financial phenomena.
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