GEOMETRIA RYNKU
(RoPEc:nla:enkjkl:10867 26-VIII-1999)

Edward W. Piotrowski
ep@alpha.uwb.edu.pl
Instytut Fizyki Teoretycznej, Uniwersytet w Białymstoku,
Lipowa 41, 15-424 Białystok

1 Portfele i ceny

Rutynową czynnością ekonomistów jest badanie proporcji. W przypadku
odnotowanych zestawów cen, czy wielkości składników majątku, propor-
cje stanowią podstawową wartość informacyjną. Absolwent miary tracą na
swój znaczeniu, gdy udział we własności staje się dostępny w ułamko-
ych częściach całości majątku, a powszechna skłonność posiadaczy kapitału
do dywersyfikacji ryzyka czyni taką formę własności dominującą. Poniże-
sze opracowanie stara się zwrócić uwagę czytelnika na właściwe miary zjawisk
rynkowych, gdy przedmiotem analiz są odpowiednie proporcje występujące
pomiędzy różnymi cenami, czy składnikami majątku.

Rynk to miejsce, gdzie dokonuje się nieskrępowana wymiana pieniędzy,
towarów, czy usług. Zależność, że owe przedmioty zainteresowania kupców
tworzą \((N+1)\)-wymiarową przestrzeń wektorową \(G\) nad ciałem liczb rzeczy-
wistych.

Definicja 1 Elementy przestrzeni \(G\) nazywamy koszylami.

Wybierzmy w \(G\) bazę \(\{g_0, g_1, \ldots , g_N\}\).

Definicja 2 Element bazy \(g_k \in G\) nazywamy \(k\)-tym dobrą rynkowym.

Dobra pełni wyróżnioną rolę względem pozostałych koszyków – dzięki nim
można sprawnie księgować operacje rynkowe, prowadzić rachunkowość, czy
analizować procesy gospodarcze.

Dla dowolnego koszyka \(p \in G\) mamy zatem jednoznaczny rozkład na
tworzące go dobra

\[
p = \sum_{k=0}^{N} p_k g_k
\]
Liczę $p_k \in \mathbb{R}$ nazywamy k-tą współrzędną koszyka.

Definicja 3 Portfel to klasa równoważności koszyków na zbiorze koszyków niepustych (tj. na zbiorze $G \setminus \{0\}$). Dwa koszyki p' i p'' są równoważne, jeżeli istnieje takie $\lambda \in \mathbb{R}$, że $p' = \lambda p''$, to znaczy

$$
\sum_{k=0}^{N} p'_{k} g_{k} = \sum_{k=0}^{N} \lambda p''_{k} g_{k}
$$

częli

$$(p'_{0}, \ldots, p'_{N}) = (\lambda p''_{0}, \ldots, \lambda p''_{N})$$

Jeżeli dla ustalonego k zachodzi $p_k \neq 0$, to zawsze można tak dobrać λ, aby w skład koszyka reprezentującego portfel wchodziła jednostka dobra g_k. Współrzędne portfela p są wtedy równe

$$(p_0, \ldots, p_{k-1}, 0, p_{k+1}, \ldots, p_N)$$

Elementy powyższego ciągu będą w dalszym tekście nazywane współrzędnymi niejednorodnymi portfela p względem k-tego dobra.

Przypadek $p_k = 0$ interpretujemy jako portfel nie podlegający wycenie w jednostkach g_k, czyli portfel niewłaściwy dla k-tego dobra. Z powyższych rozważań wynika, że współrzędne koszyka dla takiego portfela, względem każdego innego dobra, mają 0 na k-tym miejscu, czyli są następujące

$$(p_0, \ldots, p_{k-1}, 0, p_{k+1}, \ldots, p_N)$$

Podsumowując, dowolny spośród koszyków zawierających niezerową ilość któregokolwiek z dóbr g_k (tzn. koszyk spełniający warunek $p_k \neq 1$) można przeskalować mnożąc jego składniki przez pewien współczynnik λ. W ten sposób otrzymamy współrzędne niejednorodne portfela do którego należą koszyk. Współrzędne takie opisują proporcje poszczególnych dóbr, wchodzących w skład dowolnego koszyka spośród koszyków należących do jednego portfela, względem dobra g_k.

Definicja 4 Kurs rynkowy U względem l-tego dobra to dowolne odwzorowanie liniowe $U(g_l, \cdot) : G \rightarrow \mathbb{R}$.

Odwzorowanie U przyporządkowuje każdemu koszykowi p jego aktualną wartość, wyrażoną w jednostkach dobra g_l:

$$(U_p)_l = U(g_l, p) = \sum_{k=0}^{N} U(g_l, g_k) p_k$$

(1)
gdzie $U(\mathbf{g}_l, \mathbf{g}_k)$ jest ceną jednostki k-tego dobra wyrażoną w jednostkach l-tego dobra. Wartością funkcji U jest zatem l-ta współrzędna koszyka, składającego się jedynie z tak określonej ilości dobra g_i.

Ponieważ od cen rynkowych wymagamy aby

$$U(\mathbf{g}_k, U(\mathbf{g}_l, p) \mathbf{g}_l) \mathbf{g}_k = U(\mathbf{g}_k, p) \mathbf{g}_k$$

dla dowolnych p oraz \mathbf{g}_k i \mathbf{g}_l będących dobarami wzajemnie wymienialnymi (czyli $U(\mathbf{g}_k, \mathbf{g}_l) \neq 0$ i $U(\mathbf{g}_k, \mathbf{g}_l) \neq \pm \infty$), więc podstawiając $p = \mathbf{g}_j$ otrzymamy

$$U(\mathbf{g}_k, \mathbf{g}_l) U(\mathbf{g}_l, \mathbf{g}_j) = U(\mathbf{g}_k, \mathbf{g}_j)$$

(2)

dla dowolnych k, l, j. Tak więc względné wartości kursowe dóbr posiadają własność przechodniości. Podstawiając w (2) $k = l = j$ otrzymamy dwie możliwości

$$U(\mathbf{g}_k, \mathbf{g}_k) = 1 \quad \text{albo} \quad U(\mathbf{g}_k, \mathbf{g}_k) = 0$$

Przypadek $U(\mathbf{g}_k, \mathbf{g}_k) = 1$ implikuje własność odwzorowania rzutowego dla U, czyli

$$U((Up)_k \mathbf{g}_k)_k = (Up)_k$$

Natomiast przypadek $U(\mathbf{g}_k, \mathbf{g}_k) = 0$ oznacza, że k-te dobro nie funkcjonuje na rynku (można nim jedynie kogoś obdarować).

Wstawiamy w (2) $k = j$ dostajemy dla $U(\mathbf{g}_k, \mathbf{g}_k) = 1$

$$U(\mathbf{g}_k, \mathbf{g}_l) = (U(\mathbf{g}_l, \mathbf{g}_k))^{-1}$$

Przeprowadzona rozważania pozwala nam na wprowadzenie macierzy kursu rynkowego. Jest to macierz o rozmiarach $(N+1) \times (N+1)$, której (i, j)-ty element dany jest wzorem $U_{ij} := U(\mathbf{g}_i, \mathbf{g}_j)$. Najprostsza metoda wyznaczania tej macierzy prowadzi poprzez wskazanie pieniądza. Pieniądem będziemy nazywać arbitrarnie wybrane dobro, istniejące na rynku. Przyjmijmy, bez utraty ogólności, że dobrą tym jest \mathbf{g}_0. W tym momencie ograniczamy się do rozważenia tych spośród portfeli, które dopuszczają współrzędne jednorodne względem pieniądza. Portfele takie będziemy nazywać portfelemi właściwymi (lub bardziej precyzyjnie, portfelemi właściwymi względem \mathbf{g}_0). Macierz U_{ij} jest w pełni określona przez znajomość N liczb $u_k := U(\mathbf{g}_0, \mathbf{g}_k)$ dla $k = 1, \ldots, N$. Zauważmy, że $U_{00} = 1$. Własność przechodniości (2) pozwala nam wyznaczyć wszystkie elementy macierzy (U_{ij})

$$U_{ij} = u_i^{-1} u_j$$

(3)

3
Cecha ta tłumaczy potrzebę funkcjonowania pieniądza na rynku, który w sposób naturalny gwarantuje spełnienie przechodniości dla cen względnych, czyli proporcji pomiędzy wymienianymi na rynku towarami.

Rozumowanie powyższe jest poprawne, gdy wszystkie \(u_i \) są różne od zera, tzn. gdy wszystkie dobra są wymienialne na pieniąż. W przypadku dobra \(g_i \) niewymienialnego na \(g_0 \), gdy przestaje obowiązywać prawo przechodniości, zachodzi \(U_W = U_{i_0} = 0 \).

Wzór (1) zależy od liczby \(u_k \) w następujący sposób

\[
(Up)_t = \sum_{k=0}^{N} u_k p_k u_t^{-1}
\]

Dla \(U = 0 \) wzór (3) pozostanie nadal poprawny, jeżeli przyjąć że \(u_t^{-1} := 0 \).

Reasumując, dla \(U_{00} \neq 0 \) możemy stwierdzić, że kurs rynkowy jest jednoznacznie określony poprzez zadanie ciągu współrzędnych (tzw. współrzędne niejednorodne kursu \(U \) względem pieniądza \(g_0 \))

\[U = (1, u_1, \ldots, u_N)\]

Zdarza się, że zachodzi potrzeba wyrażenia cen \(u_k \) w jednostkach proporcjonalnych do \(g_0 \), np. gdy \(g_0 \) jest akcją i następuje jej split, po denominacji pieniądza, przy przeliczaniu wartości długu pieniądznego na jego ekwiwalent w postaci konkretnego dobra \(g_k \) itp. Przeskalowanie ma znaczenie dla \(U \) jedynie formalne, jednak z tej przyczyny warto \(U \) utożsamiać z dowolnym ciągiem współrzędnych

\[U = (\lambda, \lambda u_1, \ldots, \lambda u_N)\]

gdzie \(\lambda \in \mathbb{R} \setminus \{0\} \) jest dowolną stałą. Takie współrzędne nazywamy współrzędnymi jednorodnymi kursu. Można dostrzec pełną analogię między współrzędnymi jednorodnymi kursu, a współrzędnymi koszyka należącego do portfela.

Przypadek \(U_{00} = 0 \) interpretujemy jako rynek, na którym nie funkcjonuje pieniądz \(g_0 \). Odpowiednie współrzędne kursu będą wtedy równe

\[U = (0, \cdots)\]

gdzie ostatnich \(N \) liczb zostaje określonych w sposób analogiczny jak powyżej, lecz już z innym dobrem \(g_i \) w roli pieniądza.

Definicja 5 *Kurs, którego k-ta współrzędna jest 0, nazywamy kursem niewłaściwym dla pieniądza \(g_k \).*
Uwzględnienie sytuacji niewłaściwych dla danego dobra podyktowane jest potrzebą objęcia dwóch grup procesów obserwowanych z pozycji kursu. Do pierwszej grupy należą np. bankrutce spowodowane sytuacją, gdy nie-
qciane dobro przestaje istnieć jako wartość rynkowy (nie będąc już nawet zobowiązaniem), nieodwracalnie tracząc wartość. Ceny pozostałych dóbr, wy-
rażone w proporcji do wartości zniszczeń, "uciekają" do ±∞ (odpowiada to u−1 = 0), a rynek ze swym kursem „przenosi się" do podprzestrzeni niewłaści-
wej dla zniszczeń. Określenie zniszczenia zostało tu użyte dla nazwania dóbr, które przestały być przedmiotami obrotu rynkowego, bowiem najczęściej sy-
tuacja taka dotyczy zdekapitalizowanych narzędzi, lub przeterminowanych produktów.

Jednak nad zachodzo istotną jest druga grupa procesów obejmująca prek.PERMISSIONED_TOKENแดงष-executionę gospodarczą, w wyniku których dobro sumarycznie nic nie warte (gdzie zobowiązania równe są aktywom) prowadzi do powstania wartości dodanej, czyli w efekcie do portfela o wartości równej 0.

Wariant wszystkich Ukk = 0 wykłuczymy, bowiem byłby to kurs rynku trywialnego, traktującego wszystkie dobra jako niewymienialne.

Definicja 6 Zbilansowanie portfela p na kursie U to sytuacja, w której ist-
nieje dobro gk, w którego jednostkach wartość portfela p, według kursu U, jest równa 0.

\[(Up)_k = \sum_{i=0}^{N} U(g_k, g_i)p_i = \sum_{i=0}^{N} u_i p_i u_k^{-1} = 0 \]

Gdy dobrem tym jest pieniądz, powyższe równanie przyjmuje postać:

\[\sum_{k=0}^{N} u_k p_k = 0 \] (5)

Równanie to wyraża własność zbilansowanego przy kursie U portfela p, który składa się z takich dóbr pk, że koszty złożony z kolejnych dóbr w nastę-
powujących ilościach −p1, . . . , −pN wart jest, według cen U, jedną jednostkę pieniężną g0 (bowiem po = u0 = 1). Przy ustalonym kursie, sparoszową-
zowane wspó³rzednymi niejednorodnymi, zbilansowane portfele są porówny-
alne, tzn. zawarte w każdym portfelu właściwym zestaw odpowiednich dóbr wart jest w powyższym sensie jednostką pieniężną, zaś analogiczny zestaw dóbr g1, . . . , gN wchodzących w skład każdego portfela niewłaściwego nic nie jest wartość dlatego, że dla portfei niewłaściwych mamy p0 = 0.

5
Zmiana pieniądza, w którym wyliczamy wartość portfela \(p \), polega na
pomnożeniu równania bilansu przez stałą
\[
\sum_{i=0}^{N} u_ip_i g_0 \rightarrow \sum_{i=0}^{N} u_ip_i u_k^{-1} g_k
\]
dlatego własność zbilansowania portfela \((Up)_k = 0\) nie zależy od wyboru dobra \(g_k \), względem którego kurs wyliczamy, a tym samym od wyboru pieniądza. Zbilansowanie \(p \) na \(U \) możemy oznaczać pomijając indeks wskazujący dobro \(g_k \), czyli \(Up = 0 \).

Dla dowolnych dóbr, jako jednostek, w których są wyrażane wielkości kursów i portfeli, własność ta jest konsekwencją wykazanej poniżej ogólnej własności (11). Oznacza ona, że bilans jest nieznacznikiem rztowym.

Z tych samych powodów, dla ustalonego portfela \(p \), różne kursy rynkowe, na których się bilansuje, są równie atrakcyjne.

2 Rynek, a geometria rztowa

Geometra z łatwością zauważa, że przestrzeń wszystkich możliwych portfeli tworzy dobrze znaną rzeczywistą przestrzeń rztową \(\mathbb{R}^N \). Przystępny opis geometrii rztowej można znaleźć w książkach [CR98, Hal06], a wiele technicznych szczegółów np. w podręcznikach [VY46, Ber76, Ber77, BK53]. Portfele \(p \) są w tej geometrii punktami, a kursy \(U \) są obiektami dwoistymi do nich, czyli \((N-1)\)-wymiarowymi hiperpłaszczyznami (w najbardziej rozpowiadamionym przez rywaliach przypadku \(N = 2 \) są to proste – polskim żeglarzom kurs powinien kojarzyć się z kierunkiem, czyli prostą). Zbilansowanie portfela \(p \) na kursie \(U \) jest niczym innym, jak własnością należenia punktu do hiperpłaszczyzny (w \(\mathbb{R}^2 \) leżenia na prostej). Ten fundamentalny związek pomiędzy portfelem a kuresem nie powinien być obcy ekonomistom, przywyciężonym do koncepcji podwójnego księgowania (bilans prowadzi do wyniku 0) i doceniającym od pięciuset lat jej zasadność. Jeden ze współtwórców podwójnej księgowości, Fra Luca Pacioli, był jednocześnie dla Leonarda da Vinci mistrzem, zaznajamiającym go z tajnikami perspektywy zbliżonej (czyli dzisiejszej geometrii rztowej), zob. [Ber97]. To nie artyści Renesansu wymyslili odmienny sposób oglądania przedmiotów, nauczyli ich tego renesansowi księgowi. Powyższe domniemanie, dla wielu kontrowersyjne, tłumaczy niemożność wcześniejszego odkrycia perspektywy, której przyczyną był brak jakichkolwiek metod algebraicznych, potrzebnych do wyliczania proporcji, por. [Par88]. Dlatego całkiem prawdopodobna jest hipoteza, że już
Luca Pacioli mógł postrzegać rynek w sposób bardzo podobny do prezentowanego w niniejszej pracy. W czasie ostatnich stuleci rysownik przeobraził się w inżyniera, projektującego precyzyjne rysunki techniczne, zawierające zdumiewające wiele ilościowych informacji. Może już wkrótce, w dziedzinie inżynierii finansowej, będzie można dostrzec podobnie rozwiązywając się umiejętności.

Podsumowujące rynkowe określenia podstawowych pojęć geometrii rzutowej \(\mathbb{RP}^N \), zestawiając je w tabeli.

<table>
<thead>
<tr>
<th>rynek</th>
<th>geometria rzutowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>punkt</td>
</tr>
<tr>
<td>(U)</td>
<td>hiperłaszczyzna</td>
</tr>
<tr>
<td>(Up = 0)</td>
<td>kurs bilansuje portfel</td>
</tr>
</tbody>
</table>

Konfiguracja obrazuje dwa różne portfele \(p' \) i \(p'' \), bilansujące się na tym samym kursie \(U \), zaś zamieszczona poniżej konfiguracja przedstawia jeden portfel \(p \) bilansujący się na dwóch różnych kursach \(U' \) i \(U'' \). Rysunki te są do siebie dwoiste. Zajmującym byłoby odszukiwanie dwoistych odpowiedników dla bardziej skomplikowanych konfiguracji. Regulami rachunkowymi i interpretacjami sytuacji rynkowych, związanych z takimi parami, rzadzą w istocie te same prawa. Aby je dostrzec, należy zagadnienia finansowe przeformułować na język geometrii rzutowej.

Wyróżnioną rolę pieniądza (czyli dobra którym określamy wartość pozostałych dóbr) może pełnić nie tylko któreś z pozostałych dóbr \(g_k \), lecz także dowolny niebilansowany koszyk. Zmiana jednostki pieniężnej jest w \(\mathbb{RP}^N \) transformacją rzutową. Opis prawidłowości rynkowych nie powinien zależeć od wyboru jednostek pomiarowych. Te spostrzeżenie wymusza przestrzeganie następującej zasady.

Zasada symetrii rynku 1 Wnioski z każdego logicznie spójnego modelu dotyczącego rynku są niezmiennikami względem przekształceń rzutowych.

Twierdzenia Desargues’a, Pappusa, czy Pascala okazują się prawami opisanymi losami naszych pieniędzy, czy zatem powinniśmy je traktować jako intelektualne igraszki, dalekie od problemów gospodarczej rzeczywistości?
3 Przekształcenia rzutowe przestrzeni współrzędnych portfaļ

Na początku pierwszego paragrafu wybraliśmy w przestrzeni G pewną bazę. Zbadajmy jakie konsekwencje pociąga za sobą jej zmiana. Ustalmy dwie bazy, pierwszą z nich oznaczmy $g^{(1)} = \{g_0^{(1)}, \ldots, g_N^{(1)}\}$, drugą $g^{(2)} = \{g_0^{(2)}, \ldots, g_N^{(2)}\}$. Współczynniki A_{ij}, które są współrzędnymi dobra $g_i^{(2)}$

$$g_i^{(2)} = \sum_j A_{ij} g_j^{(1)}$$

w bazie $g^{(1)}$, tworzą macierz przejścia A z bazy $g^{(1)}$ do bazy $g^{(2)}$. Ze względu na zasadność przejścia odwrotnego, od bazy $g^{(2)}$ do bazy $g^{(1)}$, macierz A posiada własność odwrotności, czyli det $A \neq 0$.

Wymagamy, by zmiana bazy nie miała wpływu na materiałną zawartość koszyka, czyli

$$p = \sum_k p_k^{(1)} g_k^{(1)} = \sum_k p_k^{(2)} g_k^{(2)}$$

da wszystkich koszyków p. Warunek ten pociąga za sobą następujący wzór na transformację współrzędnych dowolnego koszyka, przy zamianie bazy.

$$p_i^{(2)} = \sum_j p_j^{(1)} A_{ji}^{-1}$$

(6)

gdzie A^{-1} oznacza macierz odwrotną do macierzy A.

Własność (2) kursu powoduje, że $U(g_i^{(1)}, p) U(p, g_i^{(1)}) = 1$ dla dowolnego niebilansowanego portfela p, zatem dla $p = g_j^{(2)}$ otrzymamy

$$U(g_j^{(2)}, g_i^{(1)}) = \left(\sum_k A_{jk} U(g_i^{(1)}, g_k^{(1)}) \right)^{-1}$$

Z ostatniej równości wynika, że

$$U(g_j^{(2)}, g_i^{(1)}) = \sum_i A_{ij} U(g_j^{(2)}, g_i^{(1)}) = \sum_i \frac{A_{ij}}{\sum_k A_{jk} (u_i^{(1)})^{-1} u_k^{(1)}} = \frac{\sum_i A_{ij} u_i^{(1)}}{\sum_k A_{ik} u_k^{(1)}}$$

Powyższa zależność określa związek cen dóbr bazowych w bazie $g^{(2)}$, z cenami dóbr bazowych w bazie $g^{(1)}$.

$$u_i^{(2)} = U(g_0^{(2)}, g_i^{(2)}) = \frac{\sum_i A_{ij} u_i^{(1)}}{\sum_k A_{0k} u_k^{(1)}}$$
co we współrzędnych jednorodnych równoważne jest następującej zależności.

\[u_i^{(2)} = \sum_j A_{ij} u_j^{(1)} \]

(7)

Pomiędzy różnymi bazami odniesienia kursy rynkowe transformują się tak, jak dobra bazowe, a portfele odwrotnie do nich.

4 Współrzędne kursu

Potraktujmy ciąg \((u_0, \ldots, u_N)\) jako współrzędne Plückera, zob. [Bor76], hiperpłaszczyzny określonej równaniem (5). Portfele \(p\), spełniające równanie (5), można sparametryzować ciągiem liczb \(f_k\)

\[p(f) = \sum_k f_k u_k^{-1} g_k + \sum_l f_l g_l \]

(8)

gdzie sumowanie z symbolem \(\bullet\) przebiega po indeksach \(k\), dla których \(u_k \neq 0\), a sumowanie z symbolem \(\circ\) po pozostałych \(l\), dla których \(u_l = 0\).

W geometrii hiperpłaszczyzna \(p(f)\) nazywana jest złączem punktów \(u_k^{-1} g_k\) dla \(u_k \neq 0\) i punktów \(g_l\) dla \(u_l = 0\), zob. [Bor76].

Ponieważ portfel, leżący w parametryzowanej hiperpłaszczyźnie, bilansuje się, więc:

\[U p(f) = (U p(f))_0 = \sum_k f_k u_k^{-1} u_k = \sum_k f_k = 0 \]

czyli punkty hiperpłaszczyzny kursu można opisać liczbami \(f_k\) przy pomocy parametrizacji (8), przy czym współrzędne \(f_k\) spełniają warunek

\[\sum_k f_k = 0 \]

(9)

gdzie wszystkie \(f_k\) nie mogą jednocześnie być równe 0 (\(p(f)\) nie byłby wtedy portfelem).

Dowolny zbilansowany portfel, należący do złącza \(p(f)\), przedstawiony jak wyżej, przy pomocy współrzędnych jednorodnych \(f_k\), bądź niejednorodnych \(f_\gamma\), nazwujemy portfelem współzmienniczym z kursem \(U\). Znaczenie portfeli współzmienniczych polega na tym, że jedynie na nich potrafimy w sposób poprawny mierzyć zyski, w sposób opisany niżej.
We współrzędnych niejednorodnych, w których \(f_0 = -1 \), pozostałe współrzędne \(f_\gamma \), dla \(\gamma \neq 0 \) spełniają warunek \(\sum_\gamma f_\gamma = 1 \), dlatego portfel współzmienniczy jest rozkładem jedynki. Gdy ograniczmy się do części hiperpłaszczyzny, gdzie dla wszystkich \(f_k \), dla których \(u_k \neq 0 \), zachodzi \(f_k \geq 0 \), \(p(f) \) jest złączem wypukłym. W przypadku portfeli i kursów niewłaściwych dla dobra \(g_0 \), portfele współzmiennicze można tworzyć zgodnie z powyższą definicją, odrzucając dobro \(g_0 \) i wybierając jako pieniądz inne stosowne dobro ze zbioru dóbr bazowych \(g \).

W dalszym tekście bieżącego paragrafu założymy, że kurs jest właściwy dla wszystkich dóbr (czyli każde \(u_k \) jest różne od 0). Dla punktów niewłaściwych można przeprowadzić analogiczne rozważania w odpowiednich przestrzeniach rzutowych o mniejszym wymiarze.

Wielkość \(f_i u_i^{-1} \) będąc współrzędną portfela, transformuje się przy zmianie bazy zgodnie z regulą (6), czyli

\[
 f_i^{(2)} = u_i^{(2)} \sum_j f_j^{(1)} (u_j^{(1)})^{-1} A^{-1}_{ji}
\]

więc

\[
 f_i^{(2)} = \sum_{jk} f_j^{(1)} (u_j^{(1)})^{-1} A_{ij}^{-1} u_k^{(1)}
\]
(10)

zatem

\[
 \sum_i f_i^{(2)} = \sum_{jk} f_j^{(1)} (u_j^{(1)})^{-1} I_{jk} u_k^{(1)} = \sum_i f_i^{(1)}
\]
(11)

gdzie \(I \) jest macierzą jednostkową.
W szczególności własność rozkładu jedynki \(\sum f_k = 0 \) nie zależy od wyboru bazy, czyli jest niezmiennikiem rzutowym.

Jeżeli rozważyć zmianę kursu jako transformację alias, czyli polegającą nie na przejściu do nowej hiperpłaszczyzny kursowej, lecz na zmianie układu współrzędnych opisujących kurs, to taką zmianę opisuje macierz diagonalna o elementach \(A_{ii} = u_i^{(1)} (u_i^{(1)})^{-1} \), co wynika ze wzoru (7). W tej sytuacji wzór (10) upraszcza się do postaci

\[
 f_i'' = (u_i')^{-1} A_i^{-1} A_{ii} u_i' f_i' = f_i'
\]

Diagonalna transformacja współrzędnych, jaką jest zmiana kursu, zachowuje wartości współrzędnych \(f_k \). Dopiero ta własność portfela współzmienniczego (a nie tylko zbliżanie na dowolnym kursie) umożliwia wyznaczenie zysku (bądź straty) wynikającego ze zmiany kursu.
5 Dwustosunek. Odległość dwóch kursów

Nieznanym obszarem zagadnień wartym zbadania są problemy rynkowe dotyczące kursów i portfeli, rozważane w kontekście wszystkich dotyczących ich przekształceń rutowych. Niczym wolna od jakichkolwiek jednostek geometrii rynku, badana w duchu von Staudta, zyska stosowne zainteresowanie, warto skupić uwagę na przestrzeniach o mniejszej symetrii, budując w ramach geometrii rutowej metryczne modele rynku.

Zbadajmy, co mierzy dwustosunek odnoszący się do zmiennych w swej naturze kursów rynkowych. Dwa różne kursy U' i U'' wyznaczają prostą rutową. Na prostej należy wskazać jeszcze dwa charakterystyczne punkty, by móc wyliczyć dwustosunek czworki punktów. Wydaje się być naturalnym posłużeniem się w tym celu hiperpłaszczyznami kursów niewłaściwymi dla poszczególnych dóbr bazowych g_k. Rozcinają one zbiór kursów właściwych dla dóbr bazowych (g_k) w \mathbb{P}^N na 2^N sympleksów N wymiarowych. W analogiczny sposób rozpadają się hiperpłaszczyzny kursów niewłaściwych, rekurencja ta dotyczy wszystkich wyodrębnionych hiperprzestrzeni niewłaściwych, o wymiarze mniejszym od N. Zależy, że dwa rozważane kursy wyznaczające prostą należą do tego samego sympleksu – tylko kursy o tej własności będą znajdować się w skończonej odległości. Dla wszystkich k współrzędne u'_k i u''_k kursów należących do jednego sympleksu są jednocześnie dodatnie, bądź jednocześnie ujemne. Każda hiperpłaszczyzna kursów niewłaściwych dla dobra g_k przecina naszą prostą. Punktów przecięt jest $N + 1$, ale tylko dwa z nich, oznaczone P_b i P_c, leżą w bezpośrednim sąsiedztwie punktów U' i U'' i tylko one należą do brzegu sympleksu zawierającego U' i U''. Z przedstawionych powodów punkty P_b i P_c najlepiej nadają się do wyznaczenia dwustosunku. Sytuację dla $N = 2$ ilustruje poniższy rysunek, przedstawiający przestrzeń \mathbb{P}^2. Trzy, poza centralnie położonym, sympleksy (w \mathbb{P}^2 są to trójkąty) można posklejać, łącząc na rysunku odpowiednio punkty skrajne (w nieskończoności). Utożsamienie to zostało zaznaczone w punktach a, b, c i m, oznaczonych niewypełnionymi kółcami. Sympleksy kursów właściwych dla dóbr bazowych g oznaczone liczbami rzeczywnymi I, II, III i IV. Punkty U_0, U_1 i U_2 mają współrzędne jednorodne odpowiednio $(\lambda, 0, 0)$, $(0, \lambda, 0)$ i $(0, 0, \lambda)$. Litery a, b i c mogą
także symbolizować hiperpłaszczyznę kursów niewłaściwych dla dobor odpowiednio: \(g_0, g_1 \) i \(g_2 \), a \(m \) może oznaczać prostą wyznaczoną przez kursy \(U' \) i \(U'' \).

Prosta ta przecina hiperpłaszczyzny \(a, b \) i \(c \) w punktach \(P_a, P_b \) i \(P_c \), lecz punkt \(P_a \) nie znajduje się w bezpośrednim sąsiedztwie punktów \(U' \) i \(U'' \). Oznaczmy szukany dwustosunek przez \([P_b, U', U'', P_c] \), wtedy odległość kursów \(d(U', U'') \) będzie równa

\[
d(U', U'') = \ln([P_b, U', U'', P_c]) = \ln \frac{|U''P_c||U'''P_b|}{|U'P_b||U''P_c|}
\]

gdzie \([P_1P_2] \) oznacza euklidesową odległość punktów \(P_1 \) i \(P_2 \), a \(\ln \) jest standardowym oznaczeniem dla logarytmu naturalnego. W ogólności, zamiast liczby Eulera e możemy przyjąć dla funkcji logarytmicznej dowolną podstawę. Zmodyfikowane do innej podstawy logarytmy odległości będą się różniczyć od wyżej wymienionych jedynie stałą multiplikatywną, jednakową dla dowolnej pary kursów \(U' \) i \(U'' \).

Współrzędne punktów na prostej \(m \) mają postać \(\lambda(u''_k - u'_k) + u'_k \) gdzie dla \(\lambda \) równego 0 i 1 otrzymamy odpowiednio punkty \(U' \) i \(U'' \). Punkt prostej \(m \) należy do podprzestrzeni kursów niewłaściwych, gdy przynajmniej jedna współrzędna kursu jest zerem: \(\prod_k \left(\lambda(u''_k - u'_k) + u'_k \right) = 0 \). Punkt \(P_b \) otrzymamy dla \(\lambda \) takiego, przy którym zeruje się \(k \)-ta współrzędna i jednocześnie liczba \(-\frac{1}{\lambda} \) jest największa z możliwych. Punkt \(P_c \), analogicznie, dla \(\lambda \) takiego, przy którym zeruje się \(l \)-ta współrzędna i jednocześnie liczba \(-\frac{1}{\lambda} \) jest
najmniejsza. Oznacza to, że punkt P_b jest wyznaczony przez parametr

$$\frac{1}{\lambda_{P_b}} = 1 - \max_k \left(\frac{u_k^H}{u_k} \right),$$

a punkt P_c przez parametr

$$\frac{1}{\lambda_{P_c}} = 1 - \min_k \left(\frac{u_k^H}{u_k} \right).$$

Potrzebne do obliczenia dwustosunku odległości euklidesowej są równe:

$$|U'P_c| = \lambda_{P_c}, \quad |U''P_c| = \lambda_{P_c} - 1,$$

$$|U'P_b| = -\lambda_{P_b}, \quad |U''P_b| = 1 - \lambda_{P_b}.$$

Oznaczając $r_k(U', U'') := \ln\left(\frac{u_k^H}{u_k} \right)$ i spostrzegając że, ze względu na monotonność funkcji logarytmicznej, można przestawić ją z operacją max, bądź min, wzór (12) na odległość U' i U'' można przekształcić do następującej postaci

$$d(U', U'') = \ln\left(\max_k \left(\frac{u_k^H}{u_k} \right)\right) - \ln\left(\min_k \left(\frac{u_k^H}{u_k} \right)\right) =$$

$$= \max_k (r_k(U', U'')) - \min_k (r_k(U', U'')) =$$

$$= \max_k (r_k(U', U'')) + \max_k (r_k(U'', U''))$$

(13)

Funkcja $r_k(U', U'')$ jest znaną w finansach przedziałową stopą procentową [KP99] wzrostu wartości dobra g_k, wyznaczonego względem dobra g_0.

Metryka $d(U', U'')$ ma przejrzystą interpretację – jest to rozmieszczenie stop zysków, wynikających ze zmiany kursu. Przesuwający się w \mathbb{R}^{P_N}, wraz z upływem czasu punkt (czyli kurs rynkowy) wyznacza w tej przestrzeni krzywą–trajektorię. Długość wycinka tej trajektorii jest stopą zysku ze zrównoważonego koszyka jasnowidza, posiàającego wszystkie aktywa kapitałowe ulokowane zawsze w tym dobrze, które najbardziej zwyknie na wartości, a pasywa przeciwnie – w dobrze najszybciej taniającym. Zysk jasnowidza wyznaczony jest w odniesieniu do koszyka skrajnego pechowca, będącego podmiotem rynkowym, mającym swoje aktywa w dobrze, w którym jasnowidz lojkuje pasywne $\textit{and vice versa}$. Koszki jasnowidza i pechowca należą do tego samego portfela w \mathbb{R}^{P_N}. Uwzględnienie kosztów operacyjnych związanych z przepływem kapitału prowadzi do zastosowania popularnego w fizyce statystycznej modelu Isinga, zob. [Pio95]. Odległość kursów jest energią
łańcucha spinowego występującego w tym modelu. Opis metryk, odpowia-
dających dowolnym graczom działającym na rynku, pozbawionym nieреali-
stycznej wiedzy jasnowidza, osiąga się w sposób dla fizyka standardowy –
przez wyznaczenie energii spinów w niezerowych temperaturach. Pojawia-
ąca się tu temperatura (a raczej wielkość termodynamicznie z nią sprzężona),
cyli entropia) określa stopień dezinformacji odnośnie rynku, jaki cechuje
wyznaczającego odległości pomiędzy notowaniami kursu. Pelna niewiedza
(nieskończona temperatura) prowadzi do degeneracji metryki, to jest sytu-
acji, gdy odległość dowolnych dwóch punktów, należących do wnętrza sym-
pleksu, maleje do zera. Podobnie jak w fizyce, temperatura rynkowa nigdy
nie przyjmuje wartości ujemnych. Dla rynku jest to konsekwencją rzutowych
własności kursu (jasnowidz i pechowiec są ujęci jednym portfelem). „Tempe-
raturowy” sposób określania odległości pomiędzy różnymi kursami bierze pod
uwagę, przechył względnych dozających na biegunie skrajnych zmian, także
przyczyni od wolniej zmieniających się cen względnych. Oznacza to wzię-
cie pod uwagę następnych przeciwnych wyznaczonej przez parę kursów prostej
z hiperplaszczynami kursów niewłaściwych. Szerszy opis rodziny zależnych
od temperatury metryk rynkowych jest przygotowywany przez autora.

Powracając do metryki dwustosunku warto zauważyć, że dla rynku
dwóch dóbr (\(N=2\)) odległość kursów, wyznaczana za pomocą formuły (13),
jest równa przedziałowej stopie procentowej wzrostu kursu wymienian dobra
zyskującego na atrakcyjności, względem dobra, dla którego proporcja wy-
miany rynkowej staje się mniej korzystna. Taką odległość kursów od dawna
mięra finansy, czego dowodem jest popularność obrazowania notowań za
pomoć wykresów logarytmicznych.

Dla wygody założmy, że odległość dwóch punktów należących do różnych
sympleksów ma sens, lecz jest nieskończona. Brzeg sympleksu, w którym od-
ległości pomiędzy kursami są skończone, w literaturze nazywany jest abso-
lutem, opisana wyżej metryczna geometria kursów należy do tzw. geometrii
Hilberta [Ber77, BK53].

Geodezyjnymi nazywamy linie, wzdłuż których pomiar odległości pomię-
dx ustalonymi punktami, przy pomocy metryki \(d(U', U'')\), daje najmniejszą
wartość. Znajomość ich kształtów pozwala analizować własności metryczne
przestrzeni.

Lewy rysunek przedstawia pękt linii geodezyjnych, w \(\mathbb{R}^2\) z metryką
\(d(U', U'')\), wyходzących z punktu o współrzędnych \((1, 2, 4)\). Na prawym
rysunku umieszczono kilka linii geodezyjnych, zgrupowanych w trójkąty. Po-
bieżne obserwacje prowadzą do hipotezy że, w zależności od usytuowania
trójkąta, odstępstwo od geometrii Euklidesa, wyznaczone defektum sumy
kątów trójkąta względem euklidesowych 180°, jest dodatnie, bądź ujemne.
Wymaga to jednak przeprowadzenia stosownych rachunków.

Zmienny kursów dają się modelować za pomocą ruchów Browna (tzn. ruchów całkowicie chaotycznych, nie wyróżniających żadnego kierunku przestrzennego i niezależnych od kształtu przebytej już drogi) w przestrzeni \mathbb{R}^N, zaopatrzonych w metrykę $d(U', U'')$. Abstrahowanie od struktury metrycznej przestrzeni kursów (czy portfeli) de facto uniemożliwia prowadzenie konsekwentnego opisu ewolucji parametrów rynkowych i prowadzi do wyników zależnych od zawsze subiektywnego wyboru jednostkowych dóbr bazowych $\{g_0, g_1, \ldots, g_N\}$.

Ze względu na techniczne zaawansowanie i rozległość zagadnienia dyfuzji na rozmaitościach nieriemannowskich, autor planuje odnieść się do sygnalizowanych problemów w poświęconym tylko temu zagadnieniu opracowaniu.

Do zdefiniowania odległości między kursami można wykorzystać metrykę, charakteryzacującą geometrię Barbiliana (np. w klasie metryk hiperbolicznych analogonem modelu Kleina, należącego do rodziny geometrii Hilbera, jest w geometriach Barbiliana model Poincarégo), zob. [Kel81]. Ten temat także zostanie przedstawiony w odrębnym tekście.

Powyższe rozważania dotyczące odległości kursów przenoszą się na opis metrycznych własności portfeli, dzięki obowiązującej w geometrii rzutowej zasadzie dwoistości [VY46].

Autor przygotowuje opracowanie dotyczące metrycznych własności portfeli, dla których absolutem są hiperprzecznikowo dwóch wyróżnionych kursów. W przypadku $N = 1$ model taki jest równoważny dwuwymiarowemu wariantowi szczególnej teorii względności, zob. rozdz.3 §25 w [Pau21]. Grupa sy-
metrii przestrzeni wektorowej dóbr, zachowującą strukturę metryczną prze-
strzeni portfeli, jest wtedy dobrze znaną fizykom–relatywistom grupą Lo-
renza. Ze względu na rozmieć sygnalizowanego tematu dalsze intrzygujące
konieksję pomiędzy fizyką, a geometrią rzutową rynku, oraz wyjaśnienie eko-
nomiczne wniosków wpływających z przyjętego modelu rynku będą ujęte w
nowym opracowaniu.

Każej konstrukcji metryki \(d(U'', U''') \) pozwoli mierzyć jedynie zmiany
zachodzące na rynku, bez odniesienia się do wyceny wartości konkretnego
portfela. Przejdzmy więc do zagadnienia pomiaru wpływu zmian kursowych
na osiągane zyski.

6 Stopa zysku z portfela

We wnętrzu jednego z sympleksów zmianę kursu można postrzegać nie jak
transformację alias, lecz jak transformację alibi, gdy nie zmieniamy współ-
rzędnych, a portfel współzmienność odnajdujemy w innym miejscu, na no-
wej hiperpłaszczyźnie kursu. Transformacja alibi w opisach ekonomicznych
jest konwencją dominującą – powszechnie dostrzegamy zmiany kursów wa-
lut, czy zaskakujące ruchy cenowe pewnych towarów, czy usług. Stronimy
zwykle od dualnego (i równoważnego!) spojrzenia ujmującego dobra w konw-
cencji alias, gdy mimo poznego braku zmian ilości składników w opisy-
wanym przez nas koszyku (bowiem jego dysponent nie wykonał żadnego
przegrupowania kapitałowego) proporcje pomiędzy komponentami koszyka
się zmieniają, bo jednostki dóbr są już inne np. z przyczyny uwzględnienia
dyskonta, inflacji, zmian cenowych, czy innych czynników. Dlatego poniższy
rachunek prowadzony jest w konwencji alibi.

Rozważmy jeden z portfeli należących do \(p(f) \), z ustalonymi parametrami
\(f_k \) dla współrzędnych \(p_k = f_k u_k^{-1} \), przy dwóch różnych kursach \(U \) i \(U +
\mathrm{d} U \). Gdyby wagi \(p_k \) portfela współzmieniczego pozostawić niezmienione to,
zgodnie ze wzorem (4), wartość portfela na kursie \(U + \mathrm{d} U \), w jednostkach \(g_0 \),
wynosiłaby

\[
\sum_k f_k u_k^{-1}(u_k + \mathrm{d} u_k)
\]

(14)

Powstała różnicę między ilością pieniądza w portfelu, a wartością pozosta-
łych składników, należy zniwelować (wykonując stosowne transakcje ryn-
kowe) tak, aby mógł się on na powrót stać zbilansowanym przy kursie \(U + \mathrm{d} U \).
Zysk z portfela, w postaci (14), przy infinitezymalnie małej zmianie kursu
\[dU \text{, wynosi} \]
\[\sum_k f_k u_k^{-1}(u_k + du_k) = \sum_k f_k d(\ln |u_k|) \]
co wynika z warunku (9) i faktu, że różniczką logarytmu wartości bezwzględnej równa jest \(d(\ln |u|) = u^{-1}du \).

Całkowity zysk na portfelu \(p(f) |_{f=\text{const.}} \), pomiędzy kursem początkowym \(U' \), a końcowym \(U'' \), obydwoj mającymi do tego samego sympleksu, będzie sumą (całką) wszystkich infinitezимальnych zysków, osiągniętych przy przejściu od \(U' \) do \(U'' \).

\[
\int_{U'}^{U''} \sum_k f_k d(\ln |u_k|) = \sum_k f_k (\ln |u_k''| - \ln |u_k'|) = \sum_k f_k \ln \frac{u_k''}{u_k'}
\]

Powyższa wielkość, choć mierzy zmianę wartości portfela względem \(g_0 \), nie zależy od wyboru pieniądza. Jeżeli na dobra, względem których mierzyć zysk, wybierzemy (zamiast \(g_0 \)) dowolne portfele: \(p' \) (nie bilansujący się na \(U' \)) i \(p'' \) (nie bilansujący się na \(U'' \)), zysk na zmianie kursu wyniesie

\[
r_f(U', U'') := \sum_k f_k \ln \frac{U''(p'', g_k)}{U'(p', g_k)} = \sum_k f_k r_k(U', U'')
\]

(15)

Funkcja \(r_f(U', U'') \) posiada własność addytywności

\[
r_f(U', U) + r_f(U, U'') = r_f(U', U'')
\]
orz równie ważną własność niezależności od wyboru portfeli \(p' \) i \(p'' \), w relacji do których zysk jest określony, bowiem

\[
\sum_k f_k \ln \frac{U''(p'', g_k)}{U'(p', g_k)} = \sum_k f_k \left(\ln \frac{U''(p'', q'')}{U'(p', q')} + \ln \frac{U''(q'', g_k)}{U'(q', g_k)} \right) = \\
= \sum_k f_k \ln \frac{U''(q'', g_k)}{U'(q', g_k)}
\]

co zachodzi na skutek bilansowania portfela współzmienniczego.
Zdaniem autora, wynik ten obrazuje podstawową zaletę stosowania podwójnej księgowości. Ostatnią własnością jest własnością jednorodności zerowego stopnia funkcji zysku względem współrzędnych kursu:

\[
r_f(\lambda U, U') = r_f(U, U')
\]
dla \(\lambda \neq 0 \). Z tej przyczyny, po prawej stronie definicji (15) brak jest argumentów \(p' \) i \(p'' \), wskazujących na niebilansowane portfele, względem których zysk jest mierzony – są one dowolne.
Funkcja $r_f(U,U')$ jest przedziałową stopą procentową zbilansowanego portfela, zapisaną w postaci niezmienniczej. Ponieważ współrzędne f_k są współrzędnymi jednorodnymi, określonymi z dokładnością do stałego mnożnika, porównywanie zysku z różnych portfeli współzmienniczych (załężnego od tej stałej) powinno się odbywać w tym samym niejednorodnym układzie współrzędnych.

7 Dynamika rynku

Z upływem czasu rynek ciągle korytuje swój kurs (kursy), a ewolucja tych zmian jest głównym przedmiotem zainteresowania ekonomistów. Na zmieniające się kursy można spojrzeć jak na ciągły potok, polegający na „przechodzeniu” w czasie rynku z jednej hiperplasycznej (kursu) w \mathbb{R}^N na drugą, bądź dwoście, jak na ciągłą krzywą w \mathbb{R}^N. Warto znaleźć stosowny portfel, który obrazowałby ową dwoistość, posiadając jednocześnie użyteczną interpretację finansową.

W literaturze spotykamy portfele, które nie zawsze się bilansują, bowiem raz ustalonego składu dóbr nie korytuje się już potem z upływem czasu (więc można je zbilansować najczęściej tylko w jednej chwili czasu). Na skutek ewolucji kursów proporcje wartości składników portfela często się zmieniają, a określanie wartości takiego syntetycznego dobra jest bardzo subiektywne, bowiem zależy od wyboru miernika tej wartości (czyli pieniądza). Ten sam kapitał mierzyj jedn walutą może być coraz droższy, a drugą coraz tańszy. Zdarza się, że ów mechanizm prowadzi do kłopotliwych paradoksów, gdy logicznie spójna prognoza przewiduje wzrost kursu waluty A względem waluty B i jednocześnie wzrost kursu waluty B względem waluty A, patrz [Pio97].

Zaprezentowane ujęcie opisu rynku koncentruje się na specyficzny rodzaju portfela, których badanie jest pozbawione wspomnianych irracjonalnych paradoksów, umożliwiając przy tym opracowywanie różnych rodzajów zagadnień [Pio97]. Pozwala na to współzmienniczość wielkości dóbr portfela wraz ze zmianą kursu rynkowego, co nie wyróżnia żadnych szczególnych kursów, np. w chwilach tworzenia, modyfikacji, czy sprzedaży całego portfela. Wszystko to dzięki temu, że portfel współzmienniczy bilansuje się na dowolnym kursie rynkowym. Przy tym, jako obiekt dwoisty do bieżącego kursu, znakomicie (bo wierne) obrazuje zmieniającą się sytuację rynkową.

Znając bieżący kurs rynkowy U, konstruujemy portfel współzmienniczy z kuresem (należący do hiperplasyczny kursu) $p(f,t)$, zgodny z parametry-
zacją (8),

\[p(f, t) := \sum_k f_k u_k(t)^{-1} g_k \]

gdzie dla arbitralnie określonej chwili \(t_0 \) wyznaczamy współrzędne \(f_k \) korzystając z zależności \(f_k = u_k(t_0)p_k(f, t_0) \).

Potok hiperpłaszczyzn w \(\mathbb{R}^N \), będący zbiorem trajektorii ewolucji czasowej portfela współzmienniczych, opisuje wszystkie ilościowe konsekwencje zmian kursów.

Podczas zmiany kursu w czasie przedziałową stopę zysku z portfela współzmienniczego określa formula (15).

Bibliografia

